summaryrefslogtreecommitdiff
path: root/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp
diff options
context:
space:
mode:
authorEric Dao <eric@erickhangdao.com>2025-03-10 17:54:31 -0400
committerEric Dao <eric@erickhangdao.com>2025-03-10 17:54:31 -0400
commitab224e2e6ba65f5a369ec392f99cd8845ad06c98 (patch)
treea1e757e9341863ed52b8ad4c5a1c45933aab9da4 /python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp
parent40da1752f2c8639186b72f6838aa415e854d0b1d (diff)
downloadthesis-master.tar.gz
thesis-master.tar.bz2
thesis-master.zip
completed thesisHEADmaster
Diffstat (limited to 'python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp')
-rw-r--r--python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp167
1 files changed, 167 insertions, 0 deletions
diff --git a/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp b/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp
new file mode 100644
index 0000000..8eb3ae1
--- /dev/null
+++ b/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp
@@ -0,0 +1,167 @@
+/*
+// Copyright (C) 2021-2022 Intel Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+*/
+
+#include <stddef.h>
+
+#include <algorithm>
+#include <memory>
+#include <stdexcept>
+#include <string>
+#include <vector>
+
+#include <opencv2/core.hpp>
+#include <opencv2/imgcodecs.hpp>
+#include <opencv2/imgproc.hpp>
+#include <openvino/openvino.hpp>
+
+#include <utils/ocv_common.hpp>
+#include <utils/slog.hpp>
+
+#include "models/image_model.h"
+#include "models/input_data.h"
+#include "models/internal_model_data.h"
+#include "models/jpeg_restoration_model.h"
+#include "models/results.h"
+
+JPEGRestorationModel::JPEGRestorationModel(const std::string& modelFileName,
+ const cv::Size& inputImgSize,
+ bool _jpegCompression,
+ const std::string& layout)
+ : ImageModel(modelFileName, false, layout) {
+ netInputHeight = inputImgSize.height;
+ netInputWidth = inputImgSize.width;
+ jpegCompression = _jpegCompression;
+}
+
+void JPEGRestorationModel::prepareInputsOutputs(std::shared_ptr<ov::Model>& model) {
+ // --------------------------- Configure input & output -------------------------------------------------
+ // --------------------------- Prepare input ------------------------------------------------------
+ if (model->inputs().size() != 1) {
+ throw std::logic_error("The JPEG Restoration model wrapper supports topologies with only 1 input");
+ }
+ inputsNames.push_back(model->input().get_any_name());
+
+ const ov::Shape& inputShape = model->input().get_shape();
+ const ov::Layout& inputLayout = getInputLayout(model->input());
+
+ if (inputShape.size() != 4 || inputShape[ov::layout::batch_idx(inputLayout)] != 1 ||
+ inputShape[ov::layout::channels_idx(inputLayout)] != 3) {
+ throw std::logic_error("3-channel 4-dimensional model's input is expected");
+ }
+
+ ov::preprocess::PrePostProcessor ppp(model);
+ ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC");
+
+ ppp.input().model().set_layout(inputLayout);
+
+ // --------------------------- Prepare output -----------------------------------------------------
+ const ov::OutputVector& outputs = model->outputs();
+ if (outputs.size() != 1) {
+ throw std::logic_error("The JPEG Restoration model wrapper supports topologies with only 1 output");
+ }
+ const ov::Shape& outputShape = model->output().get_shape();
+ const ov::Layout outputLayout{"NCHW"};
+ if (outputShape.size() != 4 || outputShape[ov::layout::batch_idx(outputLayout)] != 1 ||
+ outputShape[ov::layout::channels_idx(outputLayout)] != 3) {
+ throw std::logic_error("3-channel 4-dimensional model's output is expected");
+ }
+
+ outputsNames.push_back(model->output().get_any_name());
+ ppp.output().tensor().set_element_type(ov::element::f32);
+ model = ppp.build();
+
+ changeInputSize(model);
+}
+
+void JPEGRestorationModel::changeInputSize(std::shared_ptr<ov::Model>& model) {
+ ov::Shape inputShape = model->input().get_shape();
+ const ov::Layout& layout = ov::layout::get_layout(model->input());
+
+ const auto batchId = ov::layout::batch_idx(layout);
+ const auto heightId = ov::layout::height_idx(layout);
+ const auto widthId = ov::layout::width_idx(layout);
+
+ if (inputShape[heightId] % stride || inputShape[widthId] % stride) {
+ throw std::logic_error("The shape of the model input must be divisible by stride");
+ }
+
+ netInputHeight = static_cast<int>((netInputHeight + stride - 1) / stride) * stride;
+ netInputWidth = static_cast<int>((netInputWidth + stride - 1) / stride) * stride;
+
+ inputShape[batchId] = 1;
+ inputShape[heightId] = netInputHeight;
+ inputShape[widthId] = netInputWidth;
+
+ model->reshape(inputShape);
+}
+
+std::shared_ptr<InternalModelData> JPEGRestorationModel::preprocess(const InputData& inputData,
+ ov::InferRequest& request) {
+ cv::Mat image = inputData.asRef<ImageInputData>().inputImage;
+ const size_t h = image.rows;
+ const size_t w = image.cols;
+ cv::Mat resizedImage;
+ if (jpegCompression) {
+ std::vector<uchar> encimg;
+ std::vector<int> params{cv::IMWRITE_JPEG_QUALITY, 40};
+ cv::imencode(".jpg", image, encimg, params);
+ image = cv::imdecode(cv::Mat(encimg), 3);
+ }
+
+ if (netInputHeight - stride < h && h <= netInputHeight && netInputWidth - stride < w && w <= netInputWidth) {
+ int bottom = netInputHeight - h;
+ int right = netInputWidth - w;
+ cv::copyMakeBorder(image, resizedImage, 0, bottom, 0, right, cv::BORDER_CONSTANT, 0);
+ } else {
+ slog::warn << "\tChosen model aspect ratio doesn't match image aspect ratio" << slog::endl;
+ cv::resize(image, resizedImage, cv::Size(netInputWidth, netInputHeight));
+ }
+ request.set_input_tensor(wrapMat2Tensor(resizedImage));
+
+ return std::make_shared<InternalImageModelData>(image.cols, image.rows);
+}
+
+std::unique_ptr<ResultBase> JPEGRestorationModel::postprocess(InferenceResult& infResult) {
+ ImageResult* result = new ImageResult;
+ *static_cast<ResultBase*>(result) = static_cast<ResultBase&>(infResult);
+
+ const auto& inputImgSize = infResult.internalModelData->asRef<InternalImageModelData>();
+ const auto outputData = infResult.getFirstOutputTensor().data<float>();
+
+ std::vector<cv::Mat> imgPlanes;
+ const ov::Shape& outputShape = infResult.getFirstOutputTensor().get_shape();
+ const size_t outHeight = static_cast<int>(outputShape[2]);
+ const size_t outWidth = static_cast<int>(outputShape[3]);
+ const size_t numOfPixels = outWidth * outHeight;
+ imgPlanes = std::vector<cv::Mat>{cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[0])),
+ cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[numOfPixels])),
+ cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[numOfPixels * 2]))};
+ cv::Mat resultImg;
+ cv::merge(imgPlanes, resultImg);
+
+ if (netInputHeight - stride < static_cast<size_t>(inputImgSize.inputImgHeight) &&
+ static_cast<size_t>(inputImgSize.inputImgHeight) <= netInputHeight &&
+ netInputWidth - stride < static_cast<size_t>(inputImgSize.inputImgWidth) &&
+ static_cast<size_t>(inputImgSize.inputImgWidth) <= netInputWidth) {
+ result->resultImage = resultImg(cv::Rect(0, 0, inputImgSize.inputImgWidth, inputImgSize.inputImgHeight));
+ } else {
+ cv::resize(resultImg, result->resultImage, cv::Size(inputImgSize.inputImgWidth, inputImgSize.inputImgHeight));
+ }
+
+ result->resultImage.convertTo(result->resultImage, CV_8UC3, 255);
+
+ return std::unique_ptr<ResultBase>(result);
+}