diff options
| author | Eric Dao <eric@erickhangdao.com> | 2025-03-10 17:54:31 -0400 |
|---|---|---|
| committer | Eric Dao <eric@erickhangdao.com> | 2025-03-10 17:54:31 -0400 |
| commit | ab224e2e6ba65f5a369ec392f99cd8845ad06c98 (patch) | |
| tree | a1e757e9341863ed52b8ad4c5a1c45933aab9da4 /python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp | |
| parent | 40da1752f2c8639186b72f6838aa415e854d0b1d (diff) | |
| download | thesis-master.tar.gz thesis-master.tar.bz2 thesis-master.zip | |
Diffstat (limited to 'python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp')
| -rw-r--r-- | python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp b/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp new file mode 100644 index 0000000..8eb3ae1 --- /dev/null +++ b/python/openvino/runtime/common/models/src/jpeg_restoration_model.cpp @@ -0,0 +1,167 @@ +/* +// Copyright (C) 2021-2022 Intel Corporation +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +*/ + +#include <stddef.h> + +#include <algorithm> +#include <memory> +#include <stdexcept> +#include <string> +#include <vector> + +#include <opencv2/core.hpp> +#include <opencv2/imgcodecs.hpp> +#include <opencv2/imgproc.hpp> +#include <openvino/openvino.hpp> + +#include <utils/ocv_common.hpp> +#include <utils/slog.hpp> + +#include "models/image_model.h" +#include "models/input_data.h" +#include "models/internal_model_data.h" +#include "models/jpeg_restoration_model.h" +#include "models/results.h" + +JPEGRestorationModel::JPEGRestorationModel(const std::string& modelFileName, + const cv::Size& inputImgSize, + bool _jpegCompression, + const std::string& layout) + : ImageModel(modelFileName, false, layout) { + netInputHeight = inputImgSize.height; + netInputWidth = inputImgSize.width; + jpegCompression = _jpegCompression; +} + +void JPEGRestorationModel::prepareInputsOutputs(std::shared_ptr<ov::Model>& model) { + // --------------------------- Configure input & output ------------------------------------------------- + // --------------------------- Prepare input ------------------------------------------------------ + if (model->inputs().size() != 1) { + throw std::logic_error("The JPEG Restoration model wrapper supports topologies with only 1 input"); + } + inputsNames.push_back(model->input().get_any_name()); + + const ov::Shape& inputShape = model->input().get_shape(); + const ov::Layout& inputLayout = getInputLayout(model->input()); + + if (inputShape.size() != 4 || inputShape[ov::layout::batch_idx(inputLayout)] != 1 || + inputShape[ov::layout::channels_idx(inputLayout)] != 3) { + throw std::logic_error("3-channel 4-dimensional model's input is expected"); + } + + ov::preprocess::PrePostProcessor ppp(model); + ppp.input().tensor().set_element_type(ov::element::u8).set_layout("NHWC"); + + ppp.input().model().set_layout(inputLayout); + + // --------------------------- Prepare output ----------------------------------------------------- + const ov::OutputVector& outputs = model->outputs(); + if (outputs.size() != 1) { + throw std::logic_error("The JPEG Restoration model wrapper supports topologies with only 1 output"); + } + const ov::Shape& outputShape = model->output().get_shape(); + const ov::Layout outputLayout{"NCHW"}; + if (outputShape.size() != 4 || outputShape[ov::layout::batch_idx(outputLayout)] != 1 || + outputShape[ov::layout::channels_idx(outputLayout)] != 3) { + throw std::logic_error("3-channel 4-dimensional model's output is expected"); + } + + outputsNames.push_back(model->output().get_any_name()); + ppp.output().tensor().set_element_type(ov::element::f32); + model = ppp.build(); + + changeInputSize(model); +} + +void JPEGRestorationModel::changeInputSize(std::shared_ptr<ov::Model>& model) { + ov::Shape inputShape = model->input().get_shape(); + const ov::Layout& layout = ov::layout::get_layout(model->input()); + + const auto batchId = ov::layout::batch_idx(layout); + const auto heightId = ov::layout::height_idx(layout); + const auto widthId = ov::layout::width_idx(layout); + + if (inputShape[heightId] % stride || inputShape[widthId] % stride) { + throw std::logic_error("The shape of the model input must be divisible by stride"); + } + + netInputHeight = static_cast<int>((netInputHeight + stride - 1) / stride) * stride; + netInputWidth = static_cast<int>((netInputWidth + stride - 1) / stride) * stride; + + inputShape[batchId] = 1; + inputShape[heightId] = netInputHeight; + inputShape[widthId] = netInputWidth; + + model->reshape(inputShape); +} + +std::shared_ptr<InternalModelData> JPEGRestorationModel::preprocess(const InputData& inputData, + ov::InferRequest& request) { + cv::Mat image = inputData.asRef<ImageInputData>().inputImage; + const size_t h = image.rows; + const size_t w = image.cols; + cv::Mat resizedImage; + if (jpegCompression) { + std::vector<uchar> encimg; + std::vector<int> params{cv::IMWRITE_JPEG_QUALITY, 40}; + cv::imencode(".jpg", image, encimg, params); + image = cv::imdecode(cv::Mat(encimg), 3); + } + + if (netInputHeight - stride < h && h <= netInputHeight && netInputWidth - stride < w && w <= netInputWidth) { + int bottom = netInputHeight - h; + int right = netInputWidth - w; + cv::copyMakeBorder(image, resizedImage, 0, bottom, 0, right, cv::BORDER_CONSTANT, 0); + } else { + slog::warn << "\tChosen model aspect ratio doesn't match image aspect ratio" << slog::endl; + cv::resize(image, resizedImage, cv::Size(netInputWidth, netInputHeight)); + } + request.set_input_tensor(wrapMat2Tensor(resizedImage)); + + return std::make_shared<InternalImageModelData>(image.cols, image.rows); +} + +std::unique_ptr<ResultBase> JPEGRestorationModel::postprocess(InferenceResult& infResult) { + ImageResult* result = new ImageResult; + *static_cast<ResultBase*>(result) = static_cast<ResultBase&>(infResult); + + const auto& inputImgSize = infResult.internalModelData->asRef<InternalImageModelData>(); + const auto outputData = infResult.getFirstOutputTensor().data<float>(); + + std::vector<cv::Mat> imgPlanes; + const ov::Shape& outputShape = infResult.getFirstOutputTensor().get_shape(); + const size_t outHeight = static_cast<int>(outputShape[2]); + const size_t outWidth = static_cast<int>(outputShape[3]); + const size_t numOfPixels = outWidth * outHeight; + imgPlanes = std::vector<cv::Mat>{cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[0])), + cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[numOfPixels])), + cv::Mat(outHeight, outWidth, CV_32FC1, &(outputData[numOfPixels * 2]))}; + cv::Mat resultImg; + cv::merge(imgPlanes, resultImg); + + if (netInputHeight - stride < static_cast<size_t>(inputImgSize.inputImgHeight) && + static_cast<size_t>(inputImgSize.inputImgHeight) <= netInputHeight && + netInputWidth - stride < static_cast<size_t>(inputImgSize.inputImgWidth) && + static_cast<size_t>(inputImgSize.inputImgWidth) <= netInputWidth) { + result->resultImage = resultImg(cv::Rect(0, 0, inputImgSize.inputImgWidth, inputImgSize.inputImgHeight)); + } else { + cv::resize(resultImg, result->resultImage, cv::Size(inputImgSize.inputImgWidth, inputImgSize.inputImgHeight)); + } + + result->resultImage.convertTo(result->resultImage, CV_8UC3, 255); + + return std::unique_ptr<ResultBase>(result); +} |
