summaryrefslogtreecommitdiff
path: root/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py
diff options
context:
space:
mode:
authorEric Dao <eric@erickhangdao.com>2025-03-10 17:54:31 -0400
committerEric Dao <eric@erickhangdao.com>2025-03-10 17:54:31 -0400
commitab224e2e6ba65f5a369ec392f99cd8845ad06c98 (patch)
treea1e757e9341863ed52b8ad4c5a1c45933aab9da4 /python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py
parent40da1752f2c8639186b72f6838aa415e854d0b1d (diff)
downloadthesis-master.tar.gz
thesis-master.tar.bz2
thesis-master.zip
completed thesisHEADmaster
Diffstat (limited to 'python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py')
-rw-r--r--python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py703
1 files changed, 703 insertions, 0 deletions
diff --git a/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py b/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py
new file mode 100644
index 0000000..e11daec
--- /dev/null
+++ b/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py
@@ -0,0 +1,703 @@
+# Copyright (C) 2018-2023 Intel Corporation
+# SPDX-License-Identifier: Apache-2.0
+
+import os
+import sys
+from datetime import datetime
+
+from openvino.runtime import Dimension,properties
+
+import benchmark as openvino_benchmark
+from openvino.tools.benchmark.parameters import parse_args
+from openvino.tools.benchmark.utils.constants import MULTI_DEVICE_NAME, \
+ CPU_DEVICE_NAME, GPU_DEVICE_NAME, \
+ BIN_EXTENSION, AUTO_DEVICE_NAME
+from openvino.tools.benchmark.utils.inputs_filling import get_input_data
+from openvino.tools.benchmark.utils.logging import logger
+from openvino.tools.benchmark.utils.utils import next_step, get_number_iterations, pre_post_processing, \
+ process_help_inference_string, print_perf_counters, print_perf_counters_sort, dump_exec_graph, get_duration_in_milliseconds, \
+ get_command_line_arguments, parse_value_per_device, parse_devices, get_inputs_info, \
+ print_inputs_and_outputs_info, get_network_batch_size, load_config, dump_config, get_latency_groups, \
+ check_for_static, can_measure_as_static, parse_value_for_virtual_device, is_virtual_device, is_virtual_device_found
+from openvino.tools.benchmark.utils.statistics_report import StatisticsReport, JsonStatisticsReport, CsvStatisticsReport, \
+ averageCntReport, detailedCntReport
+
+def parse_and_check_command_line():
+ def arg_not_empty(arg_value,empty_value):
+ return not arg_value is None and not arg_value == empty_value
+
+ parser = parse_args()
+ args = parser.parse_args()
+
+ if args.latency_percentile < 1 or args.latency_percentile > 100:
+ parser.print_help()
+ raise RuntimeError("The percentile value is incorrect. The applicable values range is [1, 100].")
+
+ if not args.perf_hint == "none" and (arg_not_empty(args.number_streams, "") or arg_not_empty(args.number_threads, 0) or arg_not_empty(args.infer_threads_pinning, "")):
+ raise Exception("-nstreams, -nthreads and -pin options are fine tune options. To use them you " \
+ "should explicitely set -hint option to none. This is not OpenVINO limitation " \
+ "(those options can be used in OpenVINO together), but a benchmark_app UI rule.")
+
+ if args.report_type == "average_counters" and MULTI_DEVICE_NAME in args.target_device:
+ raise Exception("only detailed_counters report type is supported for MULTI device")
+
+ if args.number_infer_requests != 1 and "FPGA" in args.target_device:
+ logger.warning(f"If the target FPGA design uses JTAG to access the CSRs on the FPGA AI Suite IP "\
+ "(e.g. the Agilex 5E Premium Development Kit JTAG Design Example), "\
+ "then the number of inference request must be 1.")
+
+ _, ext = os.path.splitext(args.path_to_model)
+ is_network_compiled = True if ext == BIN_EXTENSION else False
+
+ return args, is_network_compiled
+
+def main():
+ statistics = None
+ try:
+ # ------------------------------ 1. Parsing and validating input arguments ------------------------------
+ next_step()
+ logger.info("Parsing input parameters")
+ args, is_network_compiled = parse_and_check_command_line()
+
+ command_line_arguments = get_command_line_arguments(sys.argv)
+ if args.report_type:
+ _statistics_class = JsonStatisticsReport if args.json_stats else CsvStatisticsReport
+ statistics = _statistics_class(StatisticsReport.Config(args.report_type, args.report_folder))
+ statistics.add_parameters(StatisticsReport.Category.COMMAND_LINE_PARAMETERS, command_line_arguments)
+
+ def is_flag_set_in_command_line(flag):
+ return any(x.strip('-') == flag for x, y in command_line_arguments)
+
+ device_name = args.target_device
+
+ devices = parse_devices(device_name)
+ device_number_streams = parse_value_per_device(devices, args.number_streams, "nstreams")
+ device_infer_precision = parse_value_per_device(devices, args.infer_precision, "infer_precision")
+
+ config = {}
+ if args.load_config:
+ load_config(args.load_config, config)
+
+ if is_network_compiled:
+ logger.info("Model is compiled")
+
+ # ------------------------------ 2. Loading OpenVINO Runtime -------------------------------------------
+ next_step(step_id=2)
+
+ benchmark = openvino_benchmark.Benchmark(args.target_device, args.number_infer_requests,
+ args.number_iterations, args.time, args.api_type, args.inference_only)
+
+ if args.extensions:
+ benchmark.add_extension(path_to_extensions=args.extensions)
+
+ ## GPU (clDNN) Extensions
+ if GPU_DEVICE_NAME in device_name and args.path_to_cldnn_config:
+ if GPU_DEVICE_NAME not in config.keys():
+ config[GPU_DEVICE_NAME] = {}
+ config[GPU_DEVICE_NAME]['CONFIG_FILE'] = args.path_to_cldnn_config
+
+ if GPU_DEVICE_NAME in config.keys() and 'CONFIG_FILE' in config[GPU_DEVICE_NAME].keys():
+ cldnn_config = config[GPU_DEVICE_NAME]['CONFIG_FILE']
+ benchmark.add_extension(path_to_cldnn_config=cldnn_config)
+
+ benchmark.print_version_info()
+
+ # --------------------- 3. Setting device configuration --------------------------------------------------------
+ next_step()
+
+ def set_performance_hint(device):
+ perf_hint = properties.hint.PerformanceMode.UNDEFINED
+ supported_properties = benchmark.core.get_property(device, properties.supported_properties())
+ if properties.hint.performance_mode() in supported_properties:
+ if is_flag_set_in_command_line('hint'):
+ if args.perf_hint == "throughput" or args.perf_hint == "tput":
+ perf_hint = properties.hint.PerformanceMode.THROUGHPUT
+ elif args.perf_hint == "latency":
+ perf_hint = properties.hint.PerformanceMode.LATENCY
+ elif args.perf_hint == "cumulative_throughput" or args.perf_hint == "ctput":
+ perf_hint = properties.hint.PerformanceMode.CUMULATIVE_THROUGHPUT
+ elif args.perf_hint=='none':
+ perf_hint = properties.hint.PerformanceMode.UNDEFINED
+ else:
+ raise RuntimeError("Incorrect performance hint. Please set -hint option to"
+ "`throughput`(tput), `latency', 'cumulative_throughput'(ctput) value or 'none'.")
+ else:
+ perf_hint = properties.hint.PerformanceMode.THROUGHPUT if benchmark.api_type == "async" else properties.hint.PerformanceMode.LATENCY
+ logger.warning(f"Performance hint was not explicitly specified in command line. " +
+ f"Device({device}) performance hint will be set to {perf_hint}.")
+ if perf_hint != properties.hint.PerformanceMode.UNDEFINED:
+ config[device][properties.hint.performance_mode()] = perf_hint
+ else:
+ logger.warning(f"Device {device} does not support performance hint property(-hint).")
+
+
+ def get_device_type_from_name(name) :
+ new_name = str(name)
+ new_name = new_name.split(".", 1)[0]
+ new_name = new_name.split("(", 1)[0]
+ return new_name
+
+ ## Set default values from dumped config
+ default_devices = set()
+ for device in devices:
+ device_type = get_device_type_from_name(device)
+ if device_type in config and device not in config:
+ config[device] = config[device_type].copy()
+ default_devices.add(device_type)
+
+ for def_device in default_devices:
+ config.pop(def_device)
+
+ perf_counts = False
+ # check if using the virtual device
+ hw_devices_list = devices.copy()
+ # Remove the hardware devices if AUTO/MULTI/HETERO appears in the devices list.
+ is_virtual = is_virtual_device_found(devices)
+ if is_virtual:
+ devices.clear()
+ # Parse out the currect virtual device as the target device.
+ virtual_device = device_name.partition(":")[0]
+ hw_devices_list.remove(virtual_device)
+ devices.append(virtual_device)
+ parse_value_for_virtual_device(virtual_device, device_number_streams)
+ parse_value_for_virtual_device(virtual_device, device_infer_precision)
+
+ for device in devices:
+ supported_properties = benchmark.core.get_property(device, properties.supported_properties())
+ if device not in config.keys():
+ config[device] = {}
+ ## high-level performance modes
+ # The orginial OV 2022.3 Python API fails with the pc flag, so we comment it out
+ # for both the HETERO and FPGA devices in our patched version of the Python demos
+ if device in ['HETERO', 'FPGA']:
+ continue
+ set_performance_hint(device)
+
+ if is_flag_set_in_command_line('nireq'):
+ config[device][properties.hint.num_requests()] = str(args.number_infer_requests)
+
+ ## Set performance counter
+ if is_flag_set_in_command_line('pc'):
+ ## set to user defined value
+ config[device][properties.enable_profiling()] = True if args.perf_counts else False
+ elif properties.enable_profiling() in config[device].keys() and config[device][properties.enable_profiling()] == True:
+ logger.warning(f"Performance counters for {device} device is turned on. " +
+ "To print results use -pc option.")
+ elif args.report_type in [ averageCntReport, detailedCntReport ]:
+ logger.warning(f"Turn on performance counters for {device} device " +
+ f"since report type is {args.report_type}.")
+ config[device][properties.enable_profiling()] = True
+ elif args.exec_graph_path is not None:
+ logger.warning(f"Turn on performance counters for {device} device " +
+ "due to execution graph dumping.")
+ config[device][properties.enable_profiling()] = True
+ elif is_flag_set_in_command_line('pcsort'):
+ ## set to default value
+ logger.warning(f"Turn on performance counters for {device} device " +
+ f"since pcsort value is {args.perf_counts_sort}.")
+ config[device][properties.enable_profiling()] = True if args.perf_counts_sort else False
+ else:
+ ## set to default value
+ config[device][properties.enable_profiling()] = args.perf_counts
+ perf_counts = True if config[device][properties.enable_profiling()] == True else perf_counts
+
+ ## insert or append property into hw device properties list
+ def update_configs(hw_device, property_name, property_value):
+ (key, value) = properties.device.properties({hw_device:{property_name:property_value}})
+ # add property into hw device properties list.
+ if key not in config[device].keys():
+ config[device][key] = value
+ else:
+ current_config = config[device][key].get()
+ if hw_device not in current_config.keys():
+ current_config.update(value.get())
+ else:
+ current_device_config = current_config[hw_device]
+ for prop in value.get().items():
+ current_device_config.update(prop[1])
+ current_config[hw_device].update(current_device_config)
+ config[device][key].set(current_config)
+
+ def update_device_config_for_virtual_device(value, config, key):
+ # check if the element contains the hardware device property
+ if len(value.split(':')) == 1:
+ config[device][key] = device_infer_precision[device]
+ else:
+ # set device nstreams properties in the AUTO/MULTI plugin
+ value_vec = value[value.find('{') + 1:value.rfind('}')].split(',')
+ device_properties = {value_vec[i].split(':')[0] : value_vec[i].split(':')[1] for i in range(0, len(value_vec))}
+ for hw_device in device_properties.keys():
+ update_configs(hw_device, key, device_properties[hw_device])
+
+ ## infer precision
+ def set_infer_precision():
+ key = properties.hint.inference_precision()
+ if device in device_infer_precision.keys():
+ ## set to user defined value
+ if key in supported_properties:
+ config[device][key] = device_infer_precision[device]
+ elif is_virtual_device(device):
+ update_device_config_for_virtual_device(device_infer_precision[device], config, key)
+ else:
+ raise Exception(f"Device {device} doesn't support config key INFERENCE_PRECISION_HINT!" \
+ " Please specify -infer_precision for correct devices in format" \
+ " <dev1>:<infer_precision1>,<dev2>:<infer_precision2> or via configuration file.")
+ return
+
+ ## the rest are individual per-device settings (overriding the values the device will deduce from perf hint)
+ def set_throughput_streams():
+ key = get_device_type_from_name(device) + "_THROUGHPUT_STREAMS"
+ if device in device_number_streams.keys():
+ ## set to user defined value
+ if key in supported_properties:
+ config[device][key] = device_number_streams[device]
+ elif properties.streams.num() in supported_properties:
+ key = properties.streams.num()
+ config[device][key] = device_number_streams[device]
+ elif is_virtual_device(device):
+ key = properties.streams.num()
+ update_device_config_for_virtual_device(device_number_streams[device], config, key)
+ else:
+ raise Exception(f"Device {device} doesn't support config key '{key}'! " +
+ "Please specify -nstreams for correct devices in format <dev1>:<nstreams1>,<dev2>:<nstreams2>")
+ elif key not in config[device].keys() and args.api_type == "async" and key not in config[device].keys() \
+ and 'PERFORMANCE_HINT' in config[device].keys() and config[device]['PERFORMANCE_HINT'] == '':
+ ## set the _AUTO value for the #streams
+ logger.warning(f"-nstreams default value is determined automatically for {device} device. " +
+ "Although the automatic selection usually provides a reasonable performance, "
+ "but it still may be non-optimal for some cases, for more information look at README.")
+ if key in supported_properties:
+ config[device][key] = get_device_type_from_name(device) + "_THROUGHPUT_AUTO"
+ elif properties.streams.Num() in supported_properties:
+ key = properties.streams.Num()
+ config[device][key] = "-1" # Set AUTO mode for streams number
+ elif is_virtual_device(device):
+ # Set nstreams to default value auto if no nstreams specified from cmd line.
+ for hw_device in hw_devices_list:
+ hw_supported_properties = benchmark.core.get_property(hw_device, properties.supported_properties())
+ key = get_device_type_from_name(hw_device) + "_THROUGHPUT_STREAMS"
+ value = get_device_type_from_name(hw_device) + "_THROUGHPUT_AUTO"
+ if key not in hw_supported_properties:
+ key = properties.streams.Num()
+ value = properties.streams.Num.AUTO
+ if key in hw_supported_properties:
+ update_configs(hw_device, key, value)
+ if key in config[device].keys():
+ device_number_streams[device] = config[device][key]
+ return
+
+ def set_nthreads_pin(property_name, property_value):
+ if property_name == properties.affinity():
+ if property_value == "YES":
+ property_value = properties.Affinity.CORE
+ elif property_value == "NO":
+ property_value = properties.Affinity.NONE
+ if property_name in supported_properties or device_name == AUTO_DEVICE_NAME:
+ # create nthreads/pin primary property for HW device or AUTO if -d is AUTO directly.
+ config[device][property_name] = property_value
+ elif is_virtual:
+ # Create secondary property of -nthreads/-pin only for CPU if CPU device appears in the devices
+ # list specified by -d.
+ if CPU_DEVICE_NAME in hw_devices_list:
+ update_configs(CPU_DEVICE_NAME, property_name, property_value)
+ return
+
+ if args.number_threads and is_flag_set_in_command_line("nthreads"):
+ # limit threading for CPU portion of inference
+ set_nthreads_pin(properties.inference_num_threads(), str(args.number_threads))
+
+ if is_flag_set_in_command_line('pin'):
+ ## set for CPU to user defined value
+ set_nthreads_pin(properties.affinity(), args.infer_threads_pinning)
+
+ set_throughput_streams()
+ set_infer_precision()
+
+ if is_virtual_device(device):
+ if device in device_number_streams.keys():
+ del device_number_streams[device]
+
+ device_config = {}
+ for device in config:
+ if benchmark.device.find(device) == 0:
+ device_config = config[device]
+ if args.cache_dir:
+ benchmark.set_cache_dir(args.cache_dir)
+
+ ## If set batch size, disable the auto batching
+ if args.batch_size:
+ logger.warning("Batch size is set. Auto batching will be disabled")
+ device_config["ALLOW_AUTO_BATCHING"] = False
+
+ topology_name = ""
+ load_from_file_enabled = is_flag_set_in_command_line('load_from_file') or is_flag_set_in_command_line('lfile')
+ if load_from_file_enabled and not is_network_compiled:
+ if args.mean_values or args.scale_values:
+ raise RuntimeError("--mean_values and --scale_values aren't supported with --load_from_file. "
+ "The values can be set via model_optimizer while generating xml")
+ next_step()
+ print("Skipping the step for loading model from file")
+ next_step()
+ print("Skipping the step for loading model from file")
+ next_step()
+ print("Skipping the step for loading model from file")
+
+ # --------------------- 7. Loading the model to the device -------------------------------------------------
+ next_step()
+
+ start_time = datetime.utcnow()
+ compiled_model = benchmark.core.compile_model(args.path_to_model, benchmark.device, device_config)
+ duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}"
+ logger.info(f"Compile model took {duration_ms} ms")
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('compile model time (ms)', duration_ms)
+ ])
+ app_inputs_info, _ = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, compiled_model.inputs)
+ batch_size = get_network_batch_size(app_inputs_info)
+ elif not is_network_compiled:
+ # --------------------- 4. Read the Intermediate Representation of the network -----------------------------
+ next_step()
+
+ logger.info("Loading model files")
+
+ start_time = datetime.utcnow()
+ model = benchmark.read_model(args.path_to_model)
+ topology_name = model.get_name()
+ duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}"
+ logger.info(f"Read model took {duration_ms} ms")
+ logger.info("Original model I/O parameters:")
+ print_inputs_and_outputs_info(model)
+
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('read model time (ms)', duration_ms)
+ ])
+
+ # --------------------- 5. Resizing network to match image sizes and given batch ---------------------------
+ next_step()
+
+ app_inputs_info, reshape = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, model.inputs)
+
+ # use batch size according to provided layout and shapes
+ batch_size = get_network_batch_size(app_inputs_info)
+ logger.info(f'Model batch size: {batch_size}')
+
+ if reshape:
+ start_time = datetime.utcnow()
+ shapes = { info.name : info.partial_shape for info in app_inputs_info }
+ logger.info(
+ 'Reshaping model: {}'.format(', '.join("'{}': {}".format(k, str(v)) for k, v in shapes.items())))
+ model.reshape(shapes)
+ duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}"
+ logger.info(f"Reshape model took {duration_ms} ms")
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('reshape model time (ms)', duration_ms)
+ ])
+
+ # --------------------- 6. Configuring inputs and outputs of the model --------------------------------------------------
+ next_step()
+
+ pre_post_processing(model, app_inputs_info, args.input_precision, args.output_precision, args.input_output_precision)
+ print_inputs_and_outputs_info(model)
+
+ # --------------------- 7. Loading the model to the device -------------------------------------------------
+ next_step()
+ start_time = datetime.utcnow()
+ compiled_model = benchmark.core.compile_model(model, benchmark.device, device_config)
+
+ duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}"
+ logger.info(f"Compile model took {duration_ms} ms")
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('compile model time (ms)', duration_ms)
+ ])
+ else:
+ if args.mean_values or args.scale_values:
+ raise RuntimeError("--mean_values and --scale_values aren't supported for compiled model. "
+ "The values can be set via model_optimizer while generating xml")
+ next_step()
+ print("Skipping the step for compiled model")
+ next_step()
+ print("Skipping the step for compiled model")
+ next_step()
+ print("Skipping the step for compiled model")
+
+ # --------------------- 7. Loading the model to the device -------------------------------------------------
+ next_step()
+
+ start_time = datetime.utcnow()
+ try:
+ with open(args.path_to_model, "rb") as model_stream:
+ model_bytes = model_stream.read()
+ compiled_model = benchmark.core.import_model(model_bytes, device_name)
+ duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}"
+ logger.info(f"Import model took {duration_ms} ms")
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('import model time (ms)', duration_ms)
+ ])
+ app_inputs_info, _ = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, compiled_model.inputs)
+ batch_size = get_network_batch_size(app_inputs_info)
+ except Exception as e:
+ raise RuntimeError(f"Cannot open or import compiled model file: {args.path_to_model}. Error: {str(e)}")
+
+ # --------------------- 8. Querying optimal runtime parameters --------------------------------------------------
+ next_step()
+
+ ## actual device-deduced settings
+ keys = compiled_model.get_property(properties.supported_properties())
+ logger.info("Model:")
+ for k in keys:
+ skip_keys = ('SUPPORTED_METRICS', 'SUPPORTED_CONFIG_KEYS', properties.supported_properties())
+ if k not in skip_keys:
+ value = compiled_model.get_property(k)
+ if k == properties.device.properties():
+ for device_key in value.keys():
+ logger.info(f' {device_key}:')
+ for k2, value2 in value.get(device_key).items():
+ if k2 not in skip_keys:
+ logger.info(f' {k2}: {value2}')
+ else:
+ logger.info(f' {k}: {value}')
+
+ # Update number of streams
+ for device in device_number_streams.keys():
+ try:
+ key = get_device_type_from_name(device) + '_THROUGHPUT_STREAMS'
+ device_number_streams[device] = compiled_model.get_property(key)
+ except:
+ key = 'NUM_STREAMS'
+ device_number_streams[device] = compiled_model.get_property(key)
+
+ # ------------------------------------ 9. Creating infer requests and preparing input data ----------------------
+ next_step()
+
+ # Create infer requests
+ requests = benchmark.create_infer_requests(compiled_model)
+
+ # Prepare input data
+ paths_to_input = list()
+ if args.paths_to_input:
+ for path in args.paths_to_input:
+ if ":" in next(iter(path), ""):
+ paths_to_input.extend(path)
+ else:
+ paths_to_input.append(os.path.abspath(*path))
+
+ data_queue = get_input_data(paths_to_input, app_inputs_info)
+
+ static_mode = check_for_static(app_inputs_info)
+ allow_inference_only_or_sync = can_measure_as_static(app_inputs_info)
+ if not allow_inference_only_or_sync and benchmark.api_type == 'sync':
+ raise Exception("Benchmarking of the model with dynamic shapes is available for async API only. "
+ "Please use -api async -hint latency -nireq 1 to emulate sync behavior.")
+
+ if benchmark.inference_only == None:
+ if static_mode:
+ benchmark.inference_only = True
+ else:
+ benchmark.inference_only = False
+ elif benchmark.inference_only and not allow_inference_only_or_sync:
+ raise Exception("Benchmarking dynamic model available with input filling in measurement loop only!")
+
+ # update batch size in case dynamic network with one data_shape
+ if allow_inference_only_or_sync and batch_size.is_dynamic:
+ batch_size = Dimension(data_queue.batch_sizes[data_queue.current_group_id])
+
+ benchmark.latency_groups = get_latency_groups(app_inputs_info)
+
+ if len(benchmark.latency_groups) > 1:
+ logger.info(f"Defined {len(benchmark.latency_groups)} tensor groups:")
+ for group in benchmark.latency_groups:
+ logger.info(f"\t{str(group)}")
+
+ # Iteration limit
+ benchmark.niter = get_number_iterations(benchmark.niter, benchmark.nireq, max(len(info.shapes) for info in app_inputs_info), benchmark.api_type)
+
+ # Set input tensors before first inference
+ for request in requests:
+ data_tensors = data_queue.get_next_input()
+ for port, data_tensor in data_tensors.items():
+ input_tensor = request.get_input_tensor(port)
+ if not static_mode:
+ input_tensor.shape = data_tensor.shape
+ if not len(input_tensor.shape):
+ input_tensor.data.flat[:] = data_tensor.data
+ else:
+ input_tensor.data[:] = data_tensor.data
+
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG,
+ [
+ ('topology', topology_name),
+ ('target device', device_name),
+ ('API', args.api_type),
+ ('inference_only', benchmark.inference_only),
+ ('precision', "UNSPECIFIED"),
+ ('batch size', str(batch_size)),
+ ('number of iterations', str(benchmark.niter)),
+ ('number of parallel infer requests', str(benchmark.nireq)),
+ ('duration (ms)', str(get_duration_in_milliseconds(benchmark.duration_seconds))),
+ ])
+
+ for nstreams in device_number_streams.items():
+ statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG,
+ [
+ (f"number of {nstreams[0]} streams", str(nstreams[1])),
+ ])
+
+ # ------------------------------------ 10. Measuring performance -----------------------------------------------
+
+ output_string = process_help_inference_string(benchmark, device_number_streams)
+
+ next_step(additional_info=output_string)
+
+ if benchmark.inference_only:
+ logger.info("Benchmarking in inference only mode (inputs filling are not included in measurement loop).")
+ else:
+ logger.info("Benchmarking in full mode (inputs filling are included in measurement loop).")
+ duration_ms = f"{benchmark.first_infer(requests):.2f}"
+ logger.info(f"First inference took {duration_ms} ms")
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('first inference time (ms)', duration_ms)
+ ])
+
+ pcseq = args.pcseq
+ if static_mode or len(benchmark.latency_groups) == 1:
+ pcseq = False
+
+ fps, median_latency_ms, avg_latency_ms, min_latency_ms, max_latency_ms, total_duration_sec, iteration = benchmark.main_loop(requests, data_queue, batch_size, args.latency_percentile, pcseq)
+
+ # ------------------------------------ 11. Dumping statistics report -------------------------------------------
+ next_step()
+
+ if args.dump_config:
+ dump_config(args.dump_config, config)
+ logger.info(f"OpenVINO configuration settings were dumped to {args.dump_config}")
+
+ if args.exec_graph_path:
+ dump_exec_graph(compiled_model, args.exec_graph_path)
+
+ if perf_counts:
+ perfs_count_list = []
+ for request in requests:
+ perfs_count_list.append(request.profiling_info)
+
+ if args.perf_counts_sort:
+ total_sorted_list = print_perf_counters_sort(perfs_count_list,sort_flag=args.perf_counts_sort)
+ if statistics:
+ statistics.dump_performance_counters_sorted(total_sorted_list)
+
+ elif args.perf_counts:
+ print_perf_counters(perfs_count_list)
+
+ if statistics:
+ # if not args.perf_counts_sort:
+ statistics.dump_performance_counters(perfs_count_list)
+
+ if statistics:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('total execution time (ms)', f'{get_duration_in_milliseconds(total_duration_sec):.2f}'),
+ ('total number of iterations', str(iteration)),
+ ])
+ if MULTI_DEVICE_NAME not in device_name:
+ latency_prefix = None
+ if args.latency_percentile == 50:
+ latency_prefix = 'latency (ms)'
+ elif args.latency_percentile != 50:
+ latency_prefix = 'latency (' + str(args.latency_percentile) + ' percentile) (ms)'
+ if latency_prefix:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ (latency_prefix, f'{median_latency_ms:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("avg latency", f'{avg_latency_ms:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("min latency", f'{min_latency_ms:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("max latency", f'{max_latency_ms:.2f}'),
+ ])
+ if pcseq:
+ for group in benchmark.latency_groups:
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("group", str(group)),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("avg latency", f'{group.avg:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("min latency", f'{group.min:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ("max latency", f'{group.max:.2f}'),
+ ])
+ statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS,
+ [
+ ('throughput', f'{fps:.2f}'),
+ ])
+ statistics.dump()
+
+ try:
+ exeDevice = compiled_model.get_property("EXECUTION_DEVICES")
+ logger.info(f'Execution Devices:{exeDevice}')
+ except:
+ exeDevice = None
+ logger.info(f'Count: {iteration} iterations')
+ logger.info(f'Duration: {get_duration_in_milliseconds(total_duration_sec):.2f} ms')
+ if MULTI_DEVICE_NAME not in device_name:
+ logger.info('Latency:')
+ if args.latency_percentile == 50:
+ logger.info(f' Median: {median_latency_ms:.2f} ms')
+ elif args.latency_percentile != 50:
+ logger.info(f' {args.latency_percentile} percentile: {median_latency_ms:.2f} ms')
+ logger.info(f' Average: {avg_latency_ms:.2f} ms')
+ logger.info(f' Min: {min_latency_ms:.2f} ms')
+ logger.info(f' Max: {max_latency_ms:.2f} ms')
+
+ if pcseq:
+ logger.info("Latency for each data shape group:")
+ for idx,group in enumerate(benchmark.latency_groups):
+ logger.info(f"{idx+1}.{str(group)}")
+ if args.latency_percentile == 50:
+ logger.info(f' Median: {group.median:.2f} ms')
+ elif args.latency_percentile != 50:
+ logger.info(f' {args.latency_percentile} percentile: {group.median:.2f} ms')
+ logger.info(f' Average: {group.avg:.2f} ms')
+ logger.info(f' Min: {group.min:.2f} ms')
+ logger.info(f' Max: {group.max:.2f} ms')
+
+ logger.info(f'Throughput: {fps:.2f} FPS')
+
+ del compiled_model
+
+ next_step.step_id = 0
+ except Exception as e:
+ logger.exception(e)
+
+ if statistics:
+ statistics.add_parameters(
+ StatisticsReport.Category.EXECUTION_RESULTS,
+ [('error', str(e))]
+ )
+ statistics.dump()
+ sys.exit(1) \ No newline at end of file