diff options
| author | Eric Dao <eric@erickhangdao.com> | 2025-03-10 17:54:31 -0400 |
|---|---|---|
| committer | Eric Dao <eric@erickhangdao.com> | 2025-03-10 17:54:31 -0400 |
| commit | ab224e2e6ba65f5a369ec392f99cd8845ad06c98 (patch) | |
| tree | a1e757e9341863ed52b8ad4c5a1c45933aab9da4 /python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py | |
| parent | 40da1752f2c8639186b72f6838aa415e854d0b1d (diff) | |
| download | thesis-master.tar.gz thesis-master.tar.bz2 thesis-master.zip | |
Diffstat (limited to 'python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py')
| -rw-r--r-- | python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py | 703 |
1 files changed, 703 insertions, 0 deletions
diff --git a/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py b/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py new file mode 100644 index 0000000..e11daec --- /dev/null +++ b/python/openvino/runtime/python_demos/OpenVINO_benchmark_app/main.py @@ -0,0 +1,703 @@ +# Copyright (C) 2018-2023 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import os +import sys +from datetime import datetime + +from openvino.runtime import Dimension,properties + +import benchmark as openvino_benchmark +from openvino.tools.benchmark.parameters import parse_args +from openvino.tools.benchmark.utils.constants import MULTI_DEVICE_NAME, \ + CPU_DEVICE_NAME, GPU_DEVICE_NAME, \ + BIN_EXTENSION, AUTO_DEVICE_NAME +from openvino.tools.benchmark.utils.inputs_filling import get_input_data +from openvino.tools.benchmark.utils.logging import logger +from openvino.tools.benchmark.utils.utils import next_step, get_number_iterations, pre_post_processing, \ + process_help_inference_string, print_perf_counters, print_perf_counters_sort, dump_exec_graph, get_duration_in_milliseconds, \ + get_command_line_arguments, parse_value_per_device, parse_devices, get_inputs_info, \ + print_inputs_and_outputs_info, get_network_batch_size, load_config, dump_config, get_latency_groups, \ + check_for_static, can_measure_as_static, parse_value_for_virtual_device, is_virtual_device, is_virtual_device_found +from openvino.tools.benchmark.utils.statistics_report import StatisticsReport, JsonStatisticsReport, CsvStatisticsReport, \ + averageCntReport, detailedCntReport + +def parse_and_check_command_line(): + def arg_not_empty(arg_value,empty_value): + return not arg_value is None and not arg_value == empty_value + + parser = parse_args() + args = parser.parse_args() + + if args.latency_percentile < 1 or args.latency_percentile > 100: + parser.print_help() + raise RuntimeError("The percentile value is incorrect. The applicable values range is [1, 100].") + + if not args.perf_hint == "none" and (arg_not_empty(args.number_streams, "") or arg_not_empty(args.number_threads, 0) or arg_not_empty(args.infer_threads_pinning, "")): + raise Exception("-nstreams, -nthreads and -pin options are fine tune options. To use them you " \ + "should explicitely set -hint option to none. This is not OpenVINO limitation " \ + "(those options can be used in OpenVINO together), but a benchmark_app UI rule.") + + if args.report_type == "average_counters" and MULTI_DEVICE_NAME in args.target_device: + raise Exception("only detailed_counters report type is supported for MULTI device") + + if args.number_infer_requests != 1 and "FPGA" in args.target_device: + logger.warning(f"If the target FPGA design uses JTAG to access the CSRs on the FPGA AI Suite IP "\ + "(e.g. the Agilex 5E Premium Development Kit JTAG Design Example), "\ + "then the number of inference request must be 1.") + + _, ext = os.path.splitext(args.path_to_model) + is_network_compiled = True if ext == BIN_EXTENSION else False + + return args, is_network_compiled + +def main(): + statistics = None + try: + # ------------------------------ 1. Parsing and validating input arguments ------------------------------ + next_step() + logger.info("Parsing input parameters") + args, is_network_compiled = parse_and_check_command_line() + + command_line_arguments = get_command_line_arguments(sys.argv) + if args.report_type: + _statistics_class = JsonStatisticsReport if args.json_stats else CsvStatisticsReport + statistics = _statistics_class(StatisticsReport.Config(args.report_type, args.report_folder)) + statistics.add_parameters(StatisticsReport.Category.COMMAND_LINE_PARAMETERS, command_line_arguments) + + def is_flag_set_in_command_line(flag): + return any(x.strip('-') == flag for x, y in command_line_arguments) + + device_name = args.target_device + + devices = parse_devices(device_name) + device_number_streams = parse_value_per_device(devices, args.number_streams, "nstreams") + device_infer_precision = parse_value_per_device(devices, args.infer_precision, "infer_precision") + + config = {} + if args.load_config: + load_config(args.load_config, config) + + if is_network_compiled: + logger.info("Model is compiled") + + # ------------------------------ 2. Loading OpenVINO Runtime ------------------------------------------- + next_step(step_id=2) + + benchmark = openvino_benchmark.Benchmark(args.target_device, args.number_infer_requests, + args.number_iterations, args.time, args.api_type, args.inference_only) + + if args.extensions: + benchmark.add_extension(path_to_extensions=args.extensions) + + ## GPU (clDNN) Extensions + if GPU_DEVICE_NAME in device_name and args.path_to_cldnn_config: + if GPU_DEVICE_NAME not in config.keys(): + config[GPU_DEVICE_NAME] = {} + config[GPU_DEVICE_NAME]['CONFIG_FILE'] = args.path_to_cldnn_config + + if GPU_DEVICE_NAME in config.keys() and 'CONFIG_FILE' in config[GPU_DEVICE_NAME].keys(): + cldnn_config = config[GPU_DEVICE_NAME]['CONFIG_FILE'] + benchmark.add_extension(path_to_cldnn_config=cldnn_config) + + benchmark.print_version_info() + + # --------------------- 3. Setting device configuration -------------------------------------------------------- + next_step() + + def set_performance_hint(device): + perf_hint = properties.hint.PerformanceMode.UNDEFINED + supported_properties = benchmark.core.get_property(device, properties.supported_properties()) + if properties.hint.performance_mode() in supported_properties: + if is_flag_set_in_command_line('hint'): + if args.perf_hint == "throughput" or args.perf_hint == "tput": + perf_hint = properties.hint.PerformanceMode.THROUGHPUT + elif args.perf_hint == "latency": + perf_hint = properties.hint.PerformanceMode.LATENCY + elif args.perf_hint == "cumulative_throughput" or args.perf_hint == "ctput": + perf_hint = properties.hint.PerformanceMode.CUMULATIVE_THROUGHPUT + elif args.perf_hint=='none': + perf_hint = properties.hint.PerformanceMode.UNDEFINED + else: + raise RuntimeError("Incorrect performance hint. Please set -hint option to" + "`throughput`(tput), `latency', 'cumulative_throughput'(ctput) value or 'none'.") + else: + perf_hint = properties.hint.PerformanceMode.THROUGHPUT if benchmark.api_type == "async" else properties.hint.PerformanceMode.LATENCY + logger.warning(f"Performance hint was not explicitly specified in command line. " + + f"Device({device}) performance hint will be set to {perf_hint}.") + if perf_hint != properties.hint.PerformanceMode.UNDEFINED: + config[device][properties.hint.performance_mode()] = perf_hint + else: + logger.warning(f"Device {device} does not support performance hint property(-hint).") + + + def get_device_type_from_name(name) : + new_name = str(name) + new_name = new_name.split(".", 1)[0] + new_name = new_name.split("(", 1)[0] + return new_name + + ## Set default values from dumped config + default_devices = set() + for device in devices: + device_type = get_device_type_from_name(device) + if device_type in config and device not in config: + config[device] = config[device_type].copy() + default_devices.add(device_type) + + for def_device in default_devices: + config.pop(def_device) + + perf_counts = False + # check if using the virtual device + hw_devices_list = devices.copy() + # Remove the hardware devices if AUTO/MULTI/HETERO appears in the devices list. + is_virtual = is_virtual_device_found(devices) + if is_virtual: + devices.clear() + # Parse out the currect virtual device as the target device. + virtual_device = device_name.partition(":")[0] + hw_devices_list.remove(virtual_device) + devices.append(virtual_device) + parse_value_for_virtual_device(virtual_device, device_number_streams) + parse_value_for_virtual_device(virtual_device, device_infer_precision) + + for device in devices: + supported_properties = benchmark.core.get_property(device, properties.supported_properties()) + if device not in config.keys(): + config[device] = {} + ## high-level performance modes + # The orginial OV 2022.3 Python API fails with the pc flag, so we comment it out + # for both the HETERO and FPGA devices in our patched version of the Python demos + if device in ['HETERO', 'FPGA']: + continue + set_performance_hint(device) + + if is_flag_set_in_command_line('nireq'): + config[device][properties.hint.num_requests()] = str(args.number_infer_requests) + + ## Set performance counter + if is_flag_set_in_command_line('pc'): + ## set to user defined value + config[device][properties.enable_profiling()] = True if args.perf_counts else False + elif properties.enable_profiling() in config[device].keys() and config[device][properties.enable_profiling()] == True: + logger.warning(f"Performance counters for {device} device is turned on. " + + "To print results use -pc option.") + elif args.report_type in [ averageCntReport, detailedCntReport ]: + logger.warning(f"Turn on performance counters for {device} device " + + f"since report type is {args.report_type}.") + config[device][properties.enable_profiling()] = True + elif args.exec_graph_path is not None: + logger.warning(f"Turn on performance counters for {device} device " + + "due to execution graph dumping.") + config[device][properties.enable_profiling()] = True + elif is_flag_set_in_command_line('pcsort'): + ## set to default value + logger.warning(f"Turn on performance counters for {device} device " + + f"since pcsort value is {args.perf_counts_sort}.") + config[device][properties.enable_profiling()] = True if args.perf_counts_sort else False + else: + ## set to default value + config[device][properties.enable_profiling()] = args.perf_counts + perf_counts = True if config[device][properties.enable_profiling()] == True else perf_counts + + ## insert or append property into hw device properties list + def update_configs(hw_device, property_name, property_value): + (key, value) = properties.device.properties({hw_device:{property_name:property_value}}) + # add property into hw device properties list. + if key not in config[device].keys(): + config[device][key] = value + else: + current_config = config[device][key].get() + if hw_device not in current_config.keys(): + current_config.update(value.get()) + else: + current_device_config = current_config[hw_device] + for prop in value.get().items(): + current_device_config.update(prop[1]) + current_config[hw_device].update(current_device_config) + config[device][key].set(current_config) + + def update_device_config_for_virtual_device(value, config, key): + # check if the element contains the hardware device property + if len(value.split(':')) == 1: + config[device][key] = device_infer_precision[device] + else: + # set device nstreams properties in the AUTO/MULTI plugin + value_vec = value[value.find('{') + 1:value.rfind('}')].split(',') + device_properties = {value_vec[i].split(':')[0] : value_vec[i].split(':')[1] for i in range(0, len(value_vec))} + for hw_device in device_properties.keys(): + update_configs(hw_device, key, device_properties[hw_device]) + + ## infer precision + def set_infer_precision(): + key = properties.hint.inference_precision() + if device in device_infer_precision.keys(): + ## set to user defined value + if key in supported_properties: + config[device][key] = device_infer_precision[device] + elif is_virtual_device(device): + update_device_config_for_virtual_device(device_infer_precision[device], config, key) + else: + raise Exception(f"Device {device} doesn't support config key INFERENCE_PRECISION_HINT!" \ + " Please specify -infer_precision for correct devices in format" \ + " <dev1>:<infer_precision1>,<dev2>:<infer_precision2> or via configuration file.") + return + + ## the rest are individual per-device settings (overriding the values the device will deduce from perf hint) + def set_throughput_streams(): + key = get_device_type_from_name(device) + "_THROUGHPUT_STREAMS" + if device in device_number_streams.keys(): + ## set to user defined value + if key in supported_properties: + config[device][key] = device_number_streams[device] + elif properties.streams.num() in supported_properties: + key = properties.streams.num() + config[device][key] = device_number_streams[device] + elif is_virtual_device(device): + key = properties.streams.num() + update_device_config_for_virtual_device(device_number_streams[device], config, key) + else: + raise Exception(f"Device {device} doesn't support config key '{key}'! " + + "Please specify -nstreams for correct devices in format <dev1>:<nstreams1>,<dev2>:<nstreams2>") + elif key not in config[device].keys() and args.api_type == "async" and key not in config[device].keys() \ + and 'PERFORMANCE_HINT' in config[device].keys() and config[device]['PERFORMANCE_HINT'] == '': + ## set the _AUTO value for the #streams + logger.warning(f"-nstreams default value is determined automatically for {device} device. " + + "Although the automatic selection usually provides a reasonable performance, " + "but it still may be non-optimal for some cases, for more information look at README.") + if key in supported_properties: + config[device][key] = get_device_type_from_name(device) + "_THROUGHPUT_AUTO" + elif properties.streams.Num() in supported_properties: + key = properties.streams.Num() + config[device][key] = "-1" # Set AUTO mode for streams number + elif is_virtual_device(device): + # Set nstreams to default value auto if no nstreams specified from cmd line. + for hw_device in hw_devices_list: + hw_supported_properties = benchmark.core.get_property(hw_device, properties.supported_properties()) + key = get_device_type_from_name(hw_device) + "_THROUGHPUT_STREAMS" + value = get_device_type_from_name(hw_device) + "_THROUGHPUT_AUTO" + if key not in hw_supported_properties: + key = properties.streams.Num() + value = properties.streams.Num.AUTO + if key in hw_supported_properties: + update_configs(hw_device, key, value) + if key in config[device].keys(): + device_number_streams[device] = config[device][key] + return + + def set_nthreads_pin(property_name, property_value): + if property_name == properties.affinity(): + if property_value == "YES": + property_value = properties.Affinity.CORE + elif property_value == "NO": + property_value = properties.Affinity.NONE + if property_name in supported_properties or device_name == AUTO_DEVICE_NAME: + # create nthreads/pin primary property for HW device or AUTO if -d is AUTO directly. + config[device][property_name] = property_value + elif is_virtual: + # Create secondary property of -nthreads/-pin only for CPU if CPU device appears in the devices + # list specified by -d. + if CPU_DEVICE_NAME in hw_devices_list: + update_configs(CPU_DEVICE_NAME, property_name, property_value) + return + + if args.number_threads and is_flag_set_in_command_line("nthreads"): + # limit threading for CPU portion of inference + set_nthreads_pin(properties.inference_num_threads(), str(args.number_threads)) + + if is_flag_set_in_command_line('pin'): + ## set for CPU to user defined value + set_nthreads_pin(properties.affinity(), args.infer_threads_pinning) + + set_throughput_streams() + set_infer_precision() + + if is_virtual_device(device): + if device in device_number_streams.keys(): + del device_number_streams[device] + + device_config = {} + for device in config: + if benchmark.device.find(device) == 0: + device_config = config[device] + if args.cache_dir: + benchmark.set_cache_dir(args.cache_dir) + + ## If set batch size, disable the auto batching + if args.batch_size: + logger.warning("Batch size is set. Auto batching will be disabled") + device_config["ALLOW_AUTO_BATCHING"] = False + + topology_name = "" + load_from_file_enabled = is_flag_set_in_command_line('load_from_file') or is_flag_set_in_command_line('lfile') + if load_from_file_enabled and not is_network_compiled: + if args.mean_values or args.scale_values: + raise RuntimeError("--mean_values and --scale_values aren't supported with --load_from_file. " + "The values can be set via model_optimizer while generating xml") + next_step() + print("Skipping the step for loading model from file") + next_step() + print("Skipping the step for loading model from file") + next_step() + print("Skipping the step for loading model from file") + + # --------------------- 7. Loading the model to the device ------------------------------------------------- + next_step() + + start_time = datetime.utcnow() + compiled_model = benchmark.core.compile_model(args.path_to_model, benchmark.device, device_config) + duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}" + logger.info(f"Compile model took {duration_ms} ms") + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('compile model time (ms)', duration_ms) + ]) + app_inputs_info, _ = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, compiled_model.inputs) + batch_size = get_network_batch_size(app_inputs_info) + elif not is_network_compiled: + # --------------------- 4. Read the Intermediate Representation of the network ----------------------------- + next_step() + + logger.info("Loading model files") + + start_time = datetime.utcnow() + model = benchmark.read_model(args.path_to_model) + topology_name = model.get_name() + duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}" + logger.info(f"Read model took {duration_ms} ms") + logger.info("Original model I/O parameters:") + print_inputs_and_outputs_info(model) + + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('read model time (ms)', duration_ms) + ]) + + # --------------------- 5. Resizing network to match image sizes and given batch --------------------------- + next_step() + + app_inputs_info, reshape = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, model.inputs) + + # use batch size according to provided layout and shapes + batch_size = get_network_batch_size(app_inputs_info) + logger.info(f'Model batch size: {batch_size}') + + if reshape: + start_time = datetime.utcnow() + shapes = { info.name : info.partial_shape for info in app_inputs_info } + logger.info( + 'Reshaping model: {}'.format(', '.join("'{}': {}".format(k, str(v)) for k, v in shapes.items()))) + model.reshape(shapes) + duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}" + logger.info(f"Reshape model took {duration_ms} ms") + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('reshape model time (ms)', duration_ms) + ]) + + # --------------------- 6. Configuring inputs and outputs of the model -------------------------------------------------- + next_step() + + pre_post_processing(model, app_inputs_info, args.input_precision, args.output_precision, args.input_output_precision) + print_inputs_and_outputs_info(model) + + # --------------------- 7. Loading the model to the device ------------------------------------------------- + next_step() + start_time = datetime.utcnow() + compiled_model = benchmark.core.compile_model(model, benchmark.device, device_config) + + duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}" + logger.info(f"Compile model took {duration_ms} ms") + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('compile model time (ms)', duration_ms) + ]) + else: + if args.mean_values or args.scale_values: + raise RuntimeError("--mean_values and --scale_values aren't supported for compiled model. " + "The values can be set via model_optimizer while generating xml") + next_step() + print("Skipping the step for compiled model") + next_step() + print("Skipping the step for compiled model") + next_step() + print("Skipping the step for compiled model") + + # --------------------- 7. Loading the model to the device ------------------------------------------------- + next_step() + + start_time = datetime.utcnow() + try: + with open(args.path_to_model, "rb") as model_stream: + model_bytes = model_stream.read() + compiled_model = benchmark.core.import_model(model_bytes, device_name) + duration_ms = f"{(datetime.utcnow() - start_time).total_seconds() * 1000:.2f}" + logger.info(f"Import model took {duration_ms} ms") + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('import model time (ms)', duration_ms) + ]) + app_inputs_info, _ = get_inputs_info(args.shape, args.data_shape, args.layout, args.batch_size, args.scale_values, args.mean_values, compiled_model.inputs) + batch_size = get_network_batch_size(app_inputs_info) + except Exception as e: + raise RuntimeError(f"Cannot open or import compiled model file: {args.path_to_model}. Error: {str(e)}") + + # --------------------- 8. Querying optimal runtime parameters -------------------------------------------------- + next_step() + + ## actual device-deduced settings + keys = compiled_model.get_property(properties.supported_properties()) + logger.info("Model:") + for k in keys: + skip_keys = ('SUPPORTED_METRICS', 'SUPPORTED_CONFIG_KEYS', properties.supported_properties()) + if k not in skip_keys: + value = compiled_model.get_property(k) + if k == properties.device.properties(): + for device_key in value.keys(): + logger.info(f' {device_key}:') + for k2, value2 in value.get(device_key).items(): + if k2 not in skip_keys: + logger.info(f' {k2}: {value2}') + else: + logger.info(f' {k}: {value}') + + # Update number of streams + for device in device_number_streams.keys(): + try: + key = get_device_type_from_name(device) + '_THROUGHPUT_STREAMS' + device_number_streams[device] = compiled_model.get_property(key) + except: + key = 'NUM_STREAMS' + device_number_streams[device] = compiled_model.get_property(key) + + # ------------------------------------ 9. Creating infer requests and preparing input data ---------------------- + next_step() + + # Create infer requests + requests = benchmark.create_infer_requests(compiled_model) + + # Prepare input data + paths_to_input = list() + if args.paths_to_input: + for path in args.paths_to_input: + if ":" in next(iter(path), ""): + paths_to_input.extend(path) + else: + paths_to_input.append(os.path.abspath(*path)) + + data_queue = get_input_data(paths_to_input, app_inputs_info) + + static_mode = check_for_static(app_inputs_info) + allow_inference_only_or_sync = can_measure_as_static(app_inputs_info) + if not allow_inference_only_or_sync and benchmark.api_type == 'sync': + raise Exception("Benchmarking of the model with dynamic shapes is available for async API only. " + "Please use -api async -hint latency -nireq 1 to emulate sync behavior.") + + if benchmark.inference_only == None: + if static_mode: + benchmark.inference_only = True + else: + benchmark.inference_only = False + elif benchmark.inference_only and not allow_inference_only_or_sync: + raise Exception("Benchmarking dynamic model available with input filling in measurement loop only!") + + # update batch size in case dynamic network with one data_shape + if allow_inference_only_or_sync and batch_size.is_dynamic: + batch_size = Dimension(data_queue.batch_sizes[data_queue.current_group_id]) + + benchmark.latency_groups = get_latency_groups(app_inputs_info) + + if len(benchmark.latency_groups) > 1: + logger.info(f"Defined {len(benchmark.latency_groups)} tensor groups:") + for group in benchmark.latency_groups: + logger.info(f"\t{str(group)}") + + # Iteration limit + benchmark.niter = get_number_iterations(benchmark.niter, benchmark.nireq, max(len(info.shapes) for info in app_inputs_info), benchmark.api_type) + + # Set input tensors before first inference + for request in requests: + data_tensors = data_queue.get_next_input() + for port, data_tensor in data_tensors.items(): + input_tensor = request.get_input_tensor(port) + if not static_mode: + input_tensor.shape = data_tensor.shape + if not len(input_tensor.shape): + input_tensor.data.flat[:] = data_tensor.data + else: + input_tensor.data[:] = data_tensor.data + + if statistics: + statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG, + [ + ('topology', topology_name), + ('target device', device_name), + ('API', args.api_type), + ('inference_only', benchmark.inference_only), + ('precision', "UNSPECIFIED"), + ('batch size', str(batch_size)), + ('number of iterations', str(benchmark.niter)), + ('number of parallel infer requests', str(benchmark.nireq)), + ('duration (ms)', str(get_duration_in_milliseconds(benchmark.duration_seconds))), + ]) + + for nstreams in device_number_streams.items(): + statistics.add_parameters(StatisticsReport.Category.RUNTIME_CONFIG, + [ + (f"number of {nstreams[0]} streams", str(nstreams[1])), + ]) + + # ------------------------------------ 10. Measuring performance ----------------------------------------------- + + output_string = process_help_inference_string(benchmark, device_number_streams) + + next_step(additional_info=output_string) + + if benchmark.inference_only: + logger.info("Benchmarking in inference only mode (inputs filling are not included in measurement loop).") + else: + logger.info("Benchmarking in full mode (inputs filling are included in measurement loop).") + duration_ms = f"{benchmark.first_infer(requests):.2f}" + logger.info(f"First inference took {duration_ms} ms") + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('first inference time (ms)', duration_ms) + ]) + + pcseq = args.pcseq + if static_mode or len(benchmark.latency_groups) == 1: + pcseq = False + + fps, median_latency_ms, avg_latency_ms, min_latency_ms, max_latency_ms, total_duration_sec, iteration = benchmark.main_loop(requests, data_queue, batch_size, args.latency_percentile, pcseq) + + # ------------------------------------ 11. Dumping statistics report ------------------------------------------- + next_step() + + if args.dump_config: + dump_config(args.dump_config, config) + logger.info(f"OpenVINO configuration settings were dumped to {args.dump_config}") + + if args.exec_graph_path: + dump_exec_graph(compiled_model, args.exec_graph_path) + + if perf_counts: + perfs_count_list = [] + for request in requests: + perfs_count_list.append(request.profiling_info) + + if args.perf_counts_sort: + total_sorted_list = print_perf_counters_sort(perfs_count_list,sort_flag=args.perf_counts_sort) + if statistics: + statistics.dump_performance_counters_sorted(total_sorted_list) + + elif args.perf_counts: + print_perf_counters(perfs_count_list) + + if statistics: + # if not args.perf_counts_sort: + statistics.dump_performance_counters(perfs_count_list) + + if statistics: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('total execution time (ms)', f'{get_duration_in_milliseconds(total_duration_sec):.2f}'), + ('total number of iterations', str(iteration)), + ]) + if MULTI_DEVICE_NAME not in device_name: + latency_prefix = None + if args.latency_percentile == 50: + latency_prefix = 'latency (ms)' + elif args.latency_percentile != 50: + latency_prefix = 'latency (' + str(args.latency_percentile) + ' percentile) (ms)' + if latency_prefix: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + (latency_prefix, f'{median_latency_ms:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("avg latency", f'{avg_latency_ms:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("min latency", f'{min_latency_ms:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("max latency", f'{max_latency_ms:.2f}'), + ]) + if pcseq: + for group in benchmark.latency_groups: + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("group", str(group)), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("avg latency", f'{group.avg:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("min latency", f'{group.min:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ("max latency", f'{group.max:.2f}'), + ]) + statistics.add_parameters(StatisticsReport.Category.EXECUTION_RESULTS, + [ + ('throughput', f'{fps:.2f}'), + ]) + statistics.dump() + + try: + exeDevice = compiled_model.get_property("EXECUTION_DEVICES") + logger.info(f'Execution Devices:{exeDevice}') + except: + exeDevice = None + logger.info(f'Count: {iteration} iterations') + logger.info(f'Duration: {get_duration_in_milliseconds(total_duration_sec):.2f} ms') + if MULTI_DEVICE_NAME not in device_name: + logger.info('Latency:') + if args.latency_percentile == 50: + logger.info(f' Median: {median_latency_ms:.2f} ms') + elif args.latency_percentile != 50: + logger.info(f' {args.latency_percentile} percentile: {median_latency_ms:.2f} ms') + logger.info(f' Average: {avg_latency_ms:.2f} ms') + logger.info(f' Min: {min_latency_ms:.2f} ms') + logger.info(f' Max: {max_latency_ms:.2f} ms') + + if pcseq: + logger.info("Latency for each data shape group:") + for idx,group in enumerate(benchmark.latency_groups): + logger.info(f"{idx+1}.{str(group)}") + if args.latency_percentile == 50: + logger.info(f' Median: {group.median:.2f} ms') + elif args.latency_percentile != 50: + logger.info(f' {args.latency_percentile} percentile: {group.median:.2f} ms') + logger.info(f' Average: {group.avg:.2f} ms') + logger.info(f' Min: {group.min:.2f} ms') + logger.info(f' Max: {group.max:.2f} ms') + + logger.info(f'Throughput: {fps:.2f} FPS') + + del compiled_model + + next_step.step_id = 0 + except Exception as e: + logger.exception(e) + + if statistics: + statistics.add_parameters( + StatisticsReport.Category.EXECUTION_RESULTS, + [('error', str(e))] + ) + statistics.dump() + sys.exit(1)
\ No newline at end of file |
