summaryrefslogtreecommitdiff
path: root/python/openvino/runtime/classification_sample_async/main.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'python/openvino/runtime/classification_sample_async/main.cpp')
-rw-r--r--python/openvino/runtime/classification_sample_async/main.cpp259
1 files changed, 259 insertions, 0 deletions
diff --git a/python/openvino/runtime/classification_sample_async/main.cpp b/python/openvino/runtime/classification_sample_async/main.cpp
new file mode 100644
index 0000000..929b109
--- /dev/null
+++ b/python/openvino/runtime/classification_sample_async/main.cpp
@@ -0,0 +1,259 @@
+// Copyright (C) 2018-2022 Intel Corporation
+// SPDX-License-Identifier: Apache-2.0
+//
+
+/**
+ * @brief The entry point the OpenVINO Runtime sample application
+ * @file classification_sample_async/main.cpp
+ * @example classification_sample_async/main.cpp
+ */
+
+#include <sys/stat.h>
+
+#include <condition_variable>
+#include <fstream>
+#include <map>
+#include <memory>
+#include <mutex>
+#include <string>
+#include <vector>
+
+// clang-format off
+#include "openvino/openvino.hpp"
+
+#include "samples/args_helper.hpp"
+#include "samples/common.hpp"
+#include "samples/classification_results.h"
+#include "samples/slog.hpp"
+#include "format_reader_ptr.h"
+
+#include "classification_sample_async.h"
+// clang-format on
+
+constexpr auto N_TOP_RESULTS = 10;
+
+using namespace ov::preprocess;
+
+bool exists_test (const std::string& name) {
+ struct stat buffer;
+ return (stat (name.c_str(), &buffer) == 0);
+}
+
+/**
+ * @brief Checks input args
+ * @param argc number of args
+ * @param argv list of input arguments
+ * @return bool status true(Success) or false(Fail)
+ */
+bool parse_and_check_command_line(int argc, char* argv[]) {
+ gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true);
+ if (FLAGS_h) {
+ show_usage();
+ showAvailableDevices();
+ return false;
+ }
+ slog::info << "Parsing input parameters" << slog::endl;
+
+ if (FLAGS_m.empty()) {
+ show_usage();
+ throw std::logic_error("Model is required but not set. Please set -m option.");
+ }
+
+ if (FLAGS_i.empty()) {
+ show_usage();
+ throw std::logic_error("Input is required but not set. Please set -i option.");
+ }
+
+ if(!FLAGS_plugins.empty()) {
+ std::cout << "Using custom plugins xml file - " << FLAGS_plugins << std::endl;
+ }
+
+ if (!exists_test(FLAGS_plugins)) {
+ std::cout << "Error: plugins_xml file: " << FLAGS_plugins << " doesn't exist. Please provide a valid path." << std::endl;
+ throw std::logic_error("plugins_xml file path does not exist.");
+ }
+
+ return true;
+}
+
+int main(int argc, char* argv[]) {
+ try {
+ // -------- Get OpenVINO Runtime version --------
+ slog::info << ov::get_openvino_version() << slog::endl;
+
+ // -------- Parsing and validation of input arguments --------
+ if (!parse_and_check_command_line(argc, argv)) {
+ return EXIT_SUCCESS;
+ }
+
+ // -------- Read input --------
+ // This vector stores paths to the processed images
+ std::vector<std::string> image_names;
+ parseInputFilesArguments(image_names);
+ if (image_names.empty())
+ throw std::logic_error("No suitable images were found");
+
+ // -------- Step 1. Initialize OpenVINO Runtime Core --------
+ ov::Core core(FLAGS_plugins);
+
+ if(FLAGS_arch_file != "" && FLAGS_d.find("FPGA") != std::string::npos){
+ core.set_property("FPGA", { { DLIAPlugin::properties::arch_path.name(), FLAGS_arch_file } });
+ if (!exists_test(FLAGS_arch_file)) {
+ std::cout << "Error: architecture file: " << FLAGS_arch_file << " doesn't exist. Please provide a valid path." << std::endl;
+ throw std::logic_error("architecture file path does not exist.");
+ }
+ }
+ // -------- Step 2. Read a model --------
+ slog::info << "Loading model files:" << slog::endl << FLAGS_m << slog::endl;
+ std::shared_ptr<ov::Model> model = core.read_model(FLAGS_m);
+ printInputAndOutputsInfo(*model);
+
+ OPENVINO_ASSERT(model->inputs().size() == 1, "Sample supports models with 1 input only");
+ OPENVINO_ASSERT(model->outputs().size() == 1, "Sample supports models with 1 output only");
+
+ // -------- Step 3. Configure preprocessing --------
+ const ov::Layout tensor_layout{"NHWC"};
+
+ ov::preprocess::PrePostProcessor ppp(model);
+ // 1) input() with no args assumes a model has a single input
+ ov::preprocess::InputInfo& input_info = ppp.input();
+ // 2) Set input tensor information:
+ // - precision of tensor is supposed to be 'u8'
+ // - layout of data is 'NHWC'
+ input_info.tensor().set_element_type(ov::element::u8).set_layout(tensor_layout);
+ // 3) Here we suppose model has 'NCHW' layout for input
+ // DLA --> We let the demo select the layout based on the model
+ // input_info.model().set_layout("NCHW");
+ // 4) output() with no args assumes a model has a single result
+ // - output() with no args assumes a model has a single result
+ // - precision of tensor is supposed to be 'f32'
+ ppp.output().tensor().set_element_type(ov::element::f32);
+
+ // 5) Once the build() method is called, the pre(post)processing steps
+ // for layout and precision conversions are inserted automatically
+ model = ppp.build();
+
+ // -------- Step 4. read input images --------
+ slog::info << "Read input images" << slog::endl;
+
+ ov::Shape input_shape = model->input().get_shape();
+ const size_t width = input_shape[ov::layout::width_idx(tensor_layout)];
+ const size_t height = input_shape[ov::layout::height_idx(tensor_layout)];
+
+ std::vector<std::shared_ptr<unsigned char>> images_data;
+ std::vector<std::string> valid_image_names;
+ for (const auto& i : image_names) {
+ FormatReader::ReaderPtr reader(i.c_str());
+ if (reader.get() == nullptr) {
+ slog::warn << "Image " + i + " cannot be read!" << slog::endl;
+ continue;
+ }
+ // Collect image data
+ std::shared_ptr<unsigned char> data(reader->getData(width, height, FormatReader::Reader::ResizeType::RESIZE));
+ if (data != nullptr) {
+ images_data.push_back(data);
+ valid_image_names.push_back(i);
+ }
+ }
+ if (images_data.empty() || valid_image_names.empty())
+ throw std::logic_error("Valid input images were not found!");
+
+ // -------- Step 5. Loading model to the device --------
+ // Setting batch size using image count
+ const size_t batchSize = images_data.size();
+ slog::info << "Set batch size " << std::to_string(batchSize) << slog::endl;
+ ov::set_batch(model, batchSize);
+ printInputAndOutputsInfo(*model);
+
+ // -------- Step 6. Loading model to the device --------
+ slog::info << "Loading model to the device " << FLAGS_d << slog::endl;
+ ov::CompiledModel compiled_model = core.compile_model(model, FLAGS_d);
+
+ // -------- Step 7. Create infer request --------
+ slog::info << "Create infer request" << slog::endl;
+ ov::InferRequest infer_request = compiled_model.create_infer_request();
+
+ // -------- Step 8. Combine multiple input images as batch --------
+ ov::Tensor input_tensor = infer_request.get_input_tensor();
+
+ for (size_t image_id = 0; image_id < images_data.size(); ++image_id) {
+ const size_t image_size = shape_size(model->input().get_shape()) / batchSize;
+ std::memcpy(input_tensor.data<std::uint8_t>() + image_id * image_size,
+ images_data[image_id].get(),
+ image_size);
+ }
+
+ // -------- Step 9. Do asynchronous inference --------
+ size_t num_iterations = 10;
+ size_t cur_iteration = 0;
+ std::condition_variable condVar;
+ std::mutex mutex;
+ std::exception_ptr exception_var;
+ // -------- Step 10. Do asynchronous inference --------
+ infer_request.set_callback([&](std::exception_ptr ex) {
+ std::lock_guard<std::mutex> l(mutex);
+ if (ex) {
+ exception_var = ex;
+ condVar.notify_all();
+ return;
+ }
+
+ cur_iteration++;
+ slog::info << "Completed " << cur_iteration << " async request execution" << slog::endl;
+ if (cur_iteration < num_iterations) {
+ // here a user can read output containing inference results and put new
+ // input to repeat async request again
+ infer_request.start_async();
+ } else {
+ // continue sample execution after last Asynchronous inference request
+ // execution
+ condVar.notify_one();
+ }
+ });
+
+ // Start async request for the first time
+ slog::info << "Start inference (asynchronous executions)" << slog::endl;
+ infer_request.start_async();
+
+ // Wait all iterations of the async request
+ std::unique_lock<std::mutex> lock(mutex);
+ condVar.wait(lock, [&] {
+ if (exception_var) {
+ std::rethrow_exception(exception_var);
+ }
+
+ return cur_iteration == num_iterations;
+ });
+
+ slog::info << "Completed async requests execution" << slog::endl;
+
+ // -------- Step 11. Process output --------
+ ov::Tensor output = infer_request.get_output_tensor();
+
+ // Read labels from file (e.x. AlexNet.labels)
+ std::string labelFileName = fileNameNoExt(FLAGS_m) + ".labels";
+ std::vector<std::string> labels;
+
+ std::ifstream inputFile;
+ inputFile.open(labelFileName, std::ios::in);
+ if (inputFile.is_open()) {
+ std::string strLine;
+ while (std::getline(inputFile, strLine)) {
+ trim(strLine);
+ labels.push_back(strLine);
+ }
+ }
+
+ // Prints formatted classification results
+ ClassificationResult classificationResult(output, valid_image_names, batchSize, N_TOP_RESULTS, labels);
+ classificationResult.show();
+ } catch (const std::exception& ex) {
+ slog::err << ex.what() << slog::endl;
+ return EXIT_FAILURE;
+ } catch (...) {
+ slog::err << "Unknown/internal exception happened." << slog::endl;
+ return EXIT_FAILURE;
+ }
+
+ return EXIT_SUCCESS;
+}