summaryrefslogtreecommitdiff
path: root/python/openvino/runtime/common/models/src/detection_model_retinaface.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'python/openvino/runtime/common/models/src/detection_model_retinaface.cpp')
-rw-r--r--python/openvino/runtime/common/models/src/detection_model_retinaface.cpp394
1 files changed, 394 insertions, 0 deletions
diff --git a/python/openvino/runtime/common/models/src/detection_model_retinaface.cpp b/python/openvino/runtime/common/models/src/detection_model_retinaface.cpp
new file mode 100644
index 0000000..8835725
--- /dev/null
+++ b/python/openvino/runtime/common/models/src/detection_model_retinaface.cpp
@@ -0,0 +1,394 @@
+/*
+// Copyright (C) 2020-2022 Intel Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+*/
+
+#include "models/detection_model_retinaface.h"
+
+#include <stddef.h>
+
+#include <algorithm>
+#include <cmath>
+#include <stdexcept>
+
+#include <opencv2/core.hpp>
+#include <openvino/openvino.hpp>
+
+#include <utils/common.hpp>
+#include <utils/nms.hpp>
+
+#include "models/internal_model_data.h"
+#include "models/results.h"
+
+ModelRetinaFace::ModelRetinaFace(const std::string& modelFileName,
+ float confidenceThreshold,
+ bool useAutoResize,
+ float boxIOUThreshold,
+ const std::string& layout)
+ : DetectionModel(modelFileName, confidenceThreshold, useAutoResize, {"Face"}, layout), // Default label is "Face"
+ shouldDetectMasks(false),
+ shouldDetectLandmarks(false),
+ boxIOUThreshold(boxIOUThreshold),
+ maskThreshold(0.8f),
+ landmarkStd(1.0f),
+ anchorCfg({{32, {32, 16}, 16, {1}}, {16, {8, 4}, 16, {1}}, {8, {2, 1}, 16, {1}}}) {
+ generateAnchorsFpn();
+}
+
+void ModelRetinaFace::prepareInputsOutputs(std::shared_ptr<ov::Model>& model) {
+ // --------------------------- Configure input & output -------------------------------------------------
+ // --------------------------- Prepare input ------------------------------------------------------
+ if (model->inputs().size() != 1) {
+ throw std::logic_error("RetinaFace model wrapper expects models that have only 1 input");
+ }
+ const ov::Shape& inputShape = model->input().get_shape();
+ const ov::Layout& inputLayout = getInputLayout(model->input());
+
+ if (inputShape[ov::layout::channels_idx(inputLayout)] != 3) {
+ throw std::logic_error("Expected 3-channel input");
+ }
+
+ ov::preprocess::PrePostProcessor ppp(model);
+ ppp.input().tensor().set_element_type(ov::element::u8).set_layout({"NHWC"});
+
+ if (useAutoResize) {
+ ppp.input().tensor().set_spatial_dynamic_shape();
+
+ ppp.input()
+ .preprocess()
+ .convert_element_type(ov::element::f32)
+ .resize(ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
+ }
+
+ ppp.input().model().set_layout(inputLayout);
+
+ // --------------------------- Reading image input parameters -------------------------------------------
+ inputsNames.push_back(model->input().get_any_name());
+ netInputWidth = inputShape[ov::layout::width_idx(inputLayout)];
+ netInputHeight = inputShape[ov::layout::height_idx(inputLayout)];
+
+ // --------------------------- Prepare output -----------------------------------------------------
+
+ const ov::OutputVector& outputs = model->outputs();
+ if (outputs.size() != 6 && outputs.size() != 9 && outputs.size() != 12) {
+ throw std::logic_error("RetinaFace model wrapper expects models that have 6, 9 or 12 outputs");
+ }
+
+ const ov::Layout outputLayout{"NCHW"};
+ std::vector<size_t> outputsSizes[OUT_MAX];
+ for (const auto& output : model->outputs()) {
+ auto outTensorName = output.get_any_name();
+ outputsNames.push_back(outTensorName);
+ ppp.output(outTensorName).tensor().set_element_type(ov::element::f32).set_layout(outputLayout);
+
+ OutputType type = OUT_MAX;
+ if (outTensorName.find("box") != std::string::npos) {
+ type = OUT_BOXES;
+ } else if (outTensorName.find("cls") != std::string::npos) {
+ type = OUT_SCORES;
+ } else if (outTensorName.find("landmark") != std::string::npos) {
+ type = OUT_LANDMARKS;
+ shouldDetectLandmarks = true;
+ } else if (outTensorName.find("type") != std::string::npos) {
+ type = OUT_MASKSCORES;
+ labels.clear();
+ labels.push_back("No Mask");
+ labels.push_back("Mask");
+ shouldDetectMasks = true;
+ landmarkStd = 0.2f;
+ } else {
+ continue;
+ }
+
+ size_t num = output.get_shape()[ov::layout::height_idx(outputLayout)];
+ size_t i = 0;
+ for (; i < outputsSizes[type].size(); ++i) {
+ if (num < outputsSizes[type][i]) {
+ break;
+ }
+ }
+ separateOutputsNames[type].insert(separateOutputsNames[type].begin() + i, outTensorName);
+ outputsSizes[type].insert(outputsSizes[type].begin() + i, num);
+ }
+ model = ppp.build();
+
+ for (size_t idx = 0; idx < outputsSizes[OUT_BOXES].size(); ++idx) {
+ size_t width = outputsSizes[OUT_BOXES][idx];
+ size_t height = outputsSizes[OUT_BOXES][idx];
+ auto s = anchorCfg[idx].stride;
+ auto anchorNum = anchorsFpn[s].size();
+
+ anchors.push_back(std::vector<Anchor>(height * width * anchorNum));
+ for (size_t iw = 0; iw < width; ++iw) {
+ size_t sw = iw * s;
+ for (size_t ih = 0; ih < height; ++ih) {
+ size_t sh = ih * s;
+ for (size_t k = 0; k < anchorNum; ++k) {
+ Anchor& anc = anchors[idx][(ih * width + iw) * anchorNum + k];
+ anc.left = anchorsFpn[s][k].left + sw;
+ anc.top = anchorsFpn[s][k].top + sh;
+ anc.right = anchorsFpn[s][k].right + sw;
+ anc.bottom = anchorsFpn[s][k].bottom + sh;
+ }
+ }
+ }
+ }
+}
+
+std::vector<Anchor> ratioEnum(const Anchor& anchor, const std::vector<int>& ratios) {
+ std::vector<Anchor> retVal;
+ const auto w = anchor.getWidth();
+ const auto h = anchor.getHeight();
+ const auto xCtr = anchor.getXCenter();
+ const auto yCtr = anchor.getYCenter();
+
+ for (const auto ratio : ratios) {
+ const auto size = w * h;
+ const auto sizeRatio = static_cast<float>(size) / ratio;
+ const auto ws = sqrt(sizeRatio);
+ const auto hs = ws * ratio;
+ retVal.push_back({static_cast<float>(xCtr - 0.5f * (ws - 1.0f)),
+ static_cast<float>(yCtr - 0.5f * (hs - 1.0f)),
+ static_cast<float>(xCtr + 0.5f * (ws - 1.0f)),
+ static_cast<float>(yCtr + 0.5f * (hs - 1.0f))});
+ }
+ return retVal;
+}
+
+std::vector<Anchor> scaleEnum(const Anchor& anchor, const std::vector<int>& scales) {
+ std::vector<Anchor> retVal;
+ const auto w = anchor.getWidth();
+ const auto h = anchor.getHeight();
+ const auto xCtr = anchor.getXCenter();
+ const auto yCtr = anchor.getYCenter();
+
+ for (auto scale : scales) {
+ const auto ws = w * scale;
+ const auto hs = h * scale;
+ retVal.push_back({static_cast<float>(xCtr - 0.5f * (ws - 1.0f)),
+ static_cast<float>(yCtr - 0.5f * (hs - 1.0f)),
+ static_cast<float>(xCtr + 0.5f * (ws - 1.0f)),
+ static_cast<float>(yCtr + 0.5f * (hs - 1.0f))});
+ }
+ return retVal;
+}
+
+std::vector<Anchor> generateAnchors(const int baseSize,
+ const std::vector<int>& ratios,
+ const std::vector<int>& scales) {
+ Anchor baseAnchor{0.0f, 0.0f, baseSize - 1.0f, baseSize - 1.0f};
+ auto ratioAnchors = ratioEnum(baseAnchor, ratios);
+ std::vector<Anchor> retVal;
+
+ for (const auto& ra : ratioAnchors) {
+ auto addon = scaleEnum(ra, scales);
+ retVal.insert(retVal.end(), addon.begin(), addon.end());
+ }
+ return retVal;
+}
+
+void ModelRetinaFace::generateAnchorsFpn() {
+ auto cfg = anchorCfg;
+ std::sort(cfg.begin(), cfg.end(), [](const AnchorCfgLine& x, const AnchorCfgLine& y) {
+ return x.stride > y.stride;
+ });
+
+ for (const auto& cfgLine : cfg) {
+ anchorsFpn.emplace(cfgLine.stride, generateAnchors(cfgLine.baseSize, cfgLine.ratios, cfgLine.scales));
+ }
+}
+
+std::vector<size_t> thresholding(const ov::Tensor& scoresTensor, const int anchorNum, const float confidenceThreshold) {
+ std::vector<size_t> indices;
+ indices.reserve(ModelRetinaFace::INIT_VECTOR_SIZE);
+ auto shape = scoresTensor.get_shape();
+ size_t restAnchors = shape[1] - anchorNum;
+ const float* scoresPtr = scoresTensor.data<float>();
+
+ for (size_t x = anchorNum; x < shape[1]; ++x) {
+ for (size_t y = 0; y < shape[2]; ++y) {
+ for (size_t z = 0; z < shape[3]; ++z) {
+ auto idx = (x * shape[2] + y) * shape[3] + z;
+ auto score = scoresPtr[idx];
+ if (score >= confidenceThreshold) {
+ indices.push_back((y * shape[3] + z) * restAnchors + (x - anchorNum));
+ }
+ }
+ }
+ }
+
+ return indices;
+}
+
+void filterScores(std::vector<float>& scores,
+ const std::vector<size_t>& indices,
+ const ov::Tensor& scoresTensor,
+ const int anchorNum) {
+ const auto& shape = scoresTensor.get_shape();
+ const float* scoresPtr = scoresTensor.data<float>();
+ const auto start = shape[2] * shape[3] * anchorNum;
+
+ for (auto i : indices) {
+ auto offset = (i % anchorNum) * shape[2] * shape[3] + i / anchorNum;
+ scores.push_back(scoresPtr[start + offset]);
+ }
+}
+
+void filterBoxes(std::vector<Anchor>& boxes,
+ const std::vector<size_t>& indices,
+ const ov::Tensor& boxesTensor,
+ int anchorNum,
+ const std::vector<Anchor>& anchors) {
+ const auto& shape = boxesTensor.get_shape();
+ const float* boxesPtr = boxesTensor.data<float>();
+ const auto boxPredLen = shape[1] / anchorNum;
+ const auto blockWidth = shape[2] * shape[3];
+
+ for (auto i : indices) {
+ auto offset = blockWidth * boxPredLen * (i % anchorNum) + (i / anchorNum);
+
+ const auto dx = boxesPtr[offset];
+ const auto dy = boxesPtr[offset + blockWidth];
+ const auto dw = boxesPtr[offset + blockWidth * 2];
+ const auto dh = boxesPtr[offset + blockWidth * 3];
+
+ const auto predCtrX = dx * anchors[i].getWidth() + anchors[i].getXCenter();
+ const auto predCtrY = dy * anchors[i].getHeight() + anchors[i].getYCenter();
+ const auto predW = exp(dw) * anchors[i].getWidth();
+ const auto predH = exp(dh) * anchors[i].getHeight();
+
+ boxes.push_back({static_cast<float>(predCtrX - 0.5f * (predW - 1.0f)),
+ static_cast<float>(predCtrY - 0.5f * (predH - 1.0f)),
+ static_cast<float>(predCtrX + 0.5f * (predW - 1.0f)),
+ static_cast<float>(predCtrY + 0.5f * (predH - 1.0f))});
+ }
+}
+
+void filterLandmarks(std::vector<cv::Point2f>& landmarks,
+ const std::vector<size_t>& indices,
+ const ov::Tensor& landmarksTensor,
+ int anchorNum,
+ const std::vector<Anchor>& anchors,
+ const float landmarkStd) {
+ const auto& shape = landmarksTensor.get_shape();
+ const float* landmarksPtr = landmarksTensor.data<float>();
+ const auto landmarkPredLen = shape[1] / anchorNum;
+ const auto blockWidth = shape[2] * shape[3];
+
+ for (auto i : indices) {
+ for (int j = 0; j < ModelRetinaFace::LANDMARKS_NUM; ++j) {
+ auto offset = (i % anchorNum) * landmarkPredLen * shape[2] * shape[3] + i / anchorNum;
+ auto deltaX = landmarksPtr[offset + j * 2 * blockWidth] * landmarkStd;
+ auto deltaY = landmarksPtr[offset + (j * 2 + 1) * blockWidth] * landmarkStd;
+ landmarks.push_back({deltaX * anchors[i].getWidth() + anchors[i].getXCenter(),
+ deltaY * anchors[i].getHeight() + anchors[i].getYCenter()});
+ }
+ }
+}
+
+void filterMasksScores(std::vector<float>& masks,
+ const std::vector<size_t>& indices,
+ const ov::Tensor& maskScoresTensor,
+ const int anchorNum) {
+ auto shape = maskScoresTensor.get_shape();
+ const float* maskScoresPtr = maskScoresTensor.data<float>();
+ auto start = shape[2] * shape[3] * anchorNum * 2;
+
+ for (auto i : indices) {
+ auto offset = (i % anchorNum) * shape[2] * shape[3] + i / anchorNum;
+ masks.push_back(maskScoresPtr[start + offset]);
+ }
+}
+
+std::unique_ptr<ResultBase> ModelRetinaFace::postprocess(InferenceResult& infResult) {
+ std::vector<float> scores;
+ scores.reserve(INIT_VECTOR_SIZE);
+ std::vector<Anchor> boxes;
+ boxes.reserve(INIT_VECTOR_SIZE);
+ std::vector<cv::Point2f> landmarks;
+ std::vector<float> masks;
+
+ if (shouldDetectLandmarks) {
+ landmarks.reserve(INIT_VECTOR_SIZE);
+ }
+ if (shouldDetectMasks) {
+ masks.reserve(INIT_VECTOR_SIZE);
+ }
+
+ // --------------------------- Gather & Filter output from all levels
+ // ----------------------------------------------------------
+ for (size_t idx = 0; idx < anchorCfg.size(); ++idx) {
+ const auto boxRaw = infResult.outputsData[separateOutputsNames[OUT_BOXES][idx]];
+ const auto scoresRaw = infResult.outputsData[separateOutputsNames[OUT_SCORES][idx]];
+ auto s = anchorCfg[idx].stride;
+ auto anchorNum = anchorsFpn[s].size();
+
+ auto validIndices = thresholding(scoresRaw, anchorNum, confidenceThreshold);
+ filterScores(scores, validIndices, scoresRaw, anchorNum);
+ filterBoxes(boxes, validIndices, boxRaw, anchorNum, anchors[idx]);
+ if (shouldDetectLandmarks) {
+ const auto landmarksRaw = infResult.outputsData[separateOutputsNames[OUT_LANDMARKS][idx]];
+ filterLandmarks(landmarks, validIndices, landmarksRaw, anchorNum, anchors[idx], landmarkStd);
+ }
+ if (shouldDetectMasks) {
+ const auto masksRaw = infResult.outputsData[separateOutputsNames[OUT_MASKSCORES][idx]];
+ filterMasksScores(masks, validIndices, masksRaw, anchorNum);
+ }
+ }
+ // --------------------------- Apply Non-maximum Suppression
+ // ---------------------------------------------------------- !shouldDetectLandmarks determines nms behavior, if
+ // true - boundaries are included in areas calculation
+ const auto keep = nms(boxes, scores, boxIOUThreshold, !shouldDetectLandmarks);
+
+ // --------------------------- Create detection result objects
+ // --------------------------------------------------------
+ RetinaFaceDetectionResult* result = new RetinaFaceDetectionResult(infResult.frameId, infResult.metaData);
+
+ const auto imgWidth = infResult.internalModelData->asRef<InternalImageModelData>().inputImgWidth;
+ const auto imgHeight = infResult.internalModelData->asRef<InternalImageModelData>().inputImgHeight;
+ const auto scaleX = static_cast<float>(netInputWidth) / imgWidth;
+ const auto scaleY = static_cast<float>(netInputHeight) / imgHeight;
+
+ result->objects.reserve(keep.size());
+ result->landmarks.reserve(keep.size() * ModelRetinaFace::LANDMARKS_NUM);
+ for (auto i : keep) {
+ DetectedObject desc;
+ desc.confidence = scores[i];
+ //--- Scaling coordinates
+ boxes[i].left /= scaleX;
+ boxes[i].top /= scaleY;
+ boxes[i].right /= scaleX;
+ boxes[i].bottom /= scaleY;
+
+ desc.x = clamp(boxes[i].left, 0.f, static_cast<float>(imgWidth));
+ desc.y = clamp(boxes[i].top, 0.f, static_cast<float>(imgHeight));
+ desc.width = clamp(boxes[i].getWidth(), 0.f, static_cast<float>(imgWidth));
+ desc.height = clamp(boxes[i].getHeight(), 0.f, static_cast<float>(imgHeight));
+ //--- Default label 0 - Face. If detecting masks then labels would be 0 - No Mask, 1 - Mask
+ desc.labelID = shouldDetectMasks ? (masks[i] > maskThreshold) : 0;
+ desc.label = labels[desc.labelID];
+ result->objects.push_back(desc);
+
+ //--- Scaling landmarks coordinates
+ for (size_t l = 0; l < ModelRetinaFace::LANDMARKS_NUM && shouldDetectLandmarks; ++l) {
+ landmarks[i * ModelRetinaFace::LANDMARKS_NUM + l].x =
+ clamp(landmarks[i * ModelRetinaFace::LANDMARKS_NUM + l].x / scaleX, 0.f, static_cast<float>(imgWidth));
+ landmarks[i * ModelRetinaFace::LANDMARKS_NUM + l].y =
+ clamp(landmarks[i * ModelRetinaFace::LANDMARKS_NUM + l].y / scaleY, 0.f, static_cast<float>(imgHeight));
+ result->landmarks.push_back(landmarks[i * ModelRetinaFace::LANDMARKS_NUM + l]);
+ }
+ }
+
+ return std::unique_ptr<ResultBase>(result);
+}