1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// Copyright 2021 Intel Corporation.
//
// This software and the related documents are Intel copyrighted materials,
// and your use of them is governed by the express license under which they
// were provided to you ("License"). Unless the License provides otherwise,
// you may not use, modify, copy, publish, distribute, disclose or transmit
// this software or the related documents without Intel's prior written
// permission.
//
// This software and the related documents are provided as is, with no express
// or implied warranties, other than those that are expressly stated in the
// License.
`resetall
`undefineall
`default_nettype none
`include "dla_acl_parameter_assert.svh"
// This module snoops on the control signals of several stallable interfaces throughout CoreDLA. It uses each valid and
// ready pair to produce several counters which are useful for debug purposes. These counters as well as the steady state
// values of valid and ready are readable by the debug network.
// It is expected that a human (and not some automated script) will examine the data dumped by the debug network. To assist
// the parsing of this information, this module also contains a ROM that describes which offsets the profiling counters
// are available at as well as a human readable string to describe what each profiling counter is. As a contingency plan
// in case the FPGA runs low on M20K memory blocks, the ROM functionality could be moved entirely into software, however
// this would then require strict versions between hardware and runtime.
// Future optimizations:
// 1. Not all interfaces runs on clk_dla, probably the easiest way to deal with this is to have one instantiation of this
// module per clock domain (use clock crossers to connect to the debug network which runs on clk_dla). Would need to
// expose RAM depth, mem init file name, etc. as parameters. In case there are lots of stallable interfaces, probably
// better to use multiple instantiations so that the ROM and read data mux won't grow super large.
// 2. Upper 32 bits of each 64-bit counter can probably be implemented with RAM instead of registers. Each time the bottom
// 32 bits overflows, assert some flag. Enhance the state machine to check and clear such flags, and upon doing so
// perform a read-modify-write to the RAM to add 1 to the upper 32 bits of the corresponding counter.
module dla_interface_profiling_counters #(
parameter int NUM_INTERFACES, //number of stallable interfaces to snoop on valid and ready
parameter int ADDR_WIDTH, //width of the read request address, typically 24
parameter int DATA_WIDTH //width of the read response data, typically 32
) (
input wire clk,
input wire i_resetn_async, //active low reset that has NOT been synchronized to any clock
//snoop on valid and ready from various stallable interfaces
input wire i_snoop_valid [NUM_INTERFACES-1:0],
input wire i_snoop_ready [NUM_INTERFACES-1:0],
//debug network interfaces
input wire i_dbg_arvalid,
input wire [ADDR_WIDTH-1:0] i_dbg_araddr,
output logic o_dbg_arready,
output logic o_dbg_rvalid,
output logic [DATA_WIDTH-1:0] o_dbg_rdata,
input wire i_dbg_rready
);
/////////////////////////////////
// Parameter legality checks //
/////////////////////////////////
//signal widths cannot be trivial
`DLA_ACL_PARAMETER_ASSERT(NUM_INTERFACES >= 1)
`DLA_ACL_PARAMETER_ASSERT(ADDR_WIDTH == 24) //this is the only configuration ever tested
`DLA_ACL_PARAMETER_ASSERT(DATA_WIDTH == 32) //this is the only configuration ever tested
/////////////////
// Constants //
/////////////////
//ROM sizing
localparam int RAM_DEPTH = 2048; //BEWARE: make sure this is at least as deep as the MIF file
localparam int RAM_ADDR = $clog2(RAM_DEPTH);
//state machine
localparam int STATE_IDLE = 0;
localparam int STATE_ROM_ACCEPT = 1;
localparam int STATE_ROM_ADDR = 2;
localparam int STATE_ROM_DATA = 3;
localparam int STATE_COUNT_ACCEPT = 4;
localparam int STATE_COUNT_ADDR = 5;
localparam int STATE_COUNT_DATA = 6;
localparam int STATE_FREEZE_DATA = 7;
localparam int NUM_STATES = 8;
///////////////
// Signals //
///////////////
//reset
logic sclrn;
//rom - implemented as ram for now
//future optimization: upper bits of profiling counters change slowly, can probably move these inside the ram
logic ram_wr_en;
logic [RAM_ADDR-1:0] ram_wr_addr, ram_rd_addr;
logic [DATA_WIDTH-1:0] ram_wr_data, ram_rd_data;
//profiling counters
genvar g;
logic freeze;
logic [DATA_WIDTH-1:0] profiling_counter_per_interface [NUM_INTERFACES-1:0];
logic [DATA_WIDTH-1:0] profiling_counter_final;
//state machine
logic [$clog2(NUM_STATES)-1:0] state;
logic [ADDR_WIDTH-1:0] captured_addr;
/////////////////////////////
// Reset Synchronization //
/////////////////////////////
dla_reset_handler_simple #(
.USE_SYNCHRONIZER (1),
.PIPE_DEPTH (1),
.NUM_COPIES (1)
)
reset_synchronizer
(
.clk (clk),
.i_resetn (i_resetn_async),
.o_sclrn (sclrn)
);
///////////
// ROM //
///////////
// See create_mif.cpp for a description of the offset/string encoding that the runtime expects and that
// the memory initialization file needs to implement.
altera_syncram
#(
.address_aclr_b ("NONE"),
.address_reg_b ("CLOCK0"),
.clock_enable_input_a ("BYPASS"),
.clock_enable_input_b ("BYPASS"),
.clock_enable_output_b ("BYPASS"),
.enable_ecc ("FALSE"),
.init_file ("dla_interface_profiling_counters.mif"),
.intended_device_family ("Arria 10"), //Quartus will fix this automatically
.lpm_type ("altera_syncram"),
.numwords_a (RAM_DEPTH),
.numwords_b (RAM_DEPTH),
.operation_mode ("DUAL_PORT"),
.outdata_aclr_b ("NONE"),
.outdata_sclr_b ("NONE"),
.outdata_reg_b ("CLOCK0"),
.power_up_uninitialized ("FALSE"),
.ram_block_type ("M20K"),
.read_during_write_mode_mixed_ports ("DONT_CARE"),
.widthad_a (RAM_ADDR),
.widthad_b (RAM_ADDR),
.width_a (DATA_WIDTH),
.width_b (DATA_WIDTH),
.width_byteena_a (1)
)
ram
(
.address_a (ram_wr_addr),
.address_b (ram_rd_addr),
.clock0 (clk),
.data_a (ram_wr_data),
.wren_a (ram_wr_en),
.q_b (ram_rd_data),
.address2_a (1'b1),
.address2_b (1'b1),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b ({DATA_WIDTH{1'b1}}),
.eccencbypass (1'b0),
.eccencparity (8'b0),
.eccstatus (),
.q_a (),
.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0)
);
assign ram_wr_en = 1'b0;
assign ram_wr_addr = '0;
assign ram_wr_data = '0;
assign ram_rd_addr = captured_addr[RAM_ADDR+1:2];
//////////////////////////
// Profiling Counters //
//////////////////////////
// Each stallable interface has a set of profiling counters which occupies a 32 byte chunk of the address space.
//
// Byte offset | Interpretation
// ------------+----------------------------------------------------------------------------------------------
// 0 | Steady state value of valid
// 4 | Steady state value of ready
// 8 | Lower 32-bits of 64-bit counter for number of transactions accepted (valid & ready)
// 12 | Upper 32-bits of the above counter
// 16 | Lower 32-bits of 64-bit counter for number of clock cycles of backpressure (valid & ~ready)
// 20 | Upper 32-bits of the above counter
// 24 | Lower 32-bits of 64-bit counter for number of clock cycles of data starvation (~valid & ready)
// 28 | Upper 32-bits of the above counter
//
// There is some special handling for data starvation. It is a bit trickier to profile since "~valid & ready" will be
// true before any work has begun as well as after all the work has finished. To resolve this, only start counting
// after the first item of work has been seen, and every time a new item of work is seen capture the value in a
// shadow register (avoid observing any increment in the raw counter after the last item of work).
//
// Since it takes multiple 32-bit reads to access the entire 64-bit value, there is the ability to freeze the counter
// values. This is implemented by masking ready and valid i.e. the increment to the counter is set to 0. Note the freeze
// does not affect the reading of the steady state value of valid and ready.
for (g=0; g<NUM_INTERFACES; g++) begin : GEN_PROFILING_COUNTERS
//add pipelining for routability to decouple the physical location of the interface from the
//physical location of the profiling counters
localparam int INPUT_PIPE_STAGES = 4;
logic valid, ready;
logic [INPUT_PIPE_STAGES-2:0] pipe_valid, pipe_ready;
always_ff @(posedge clk) begin
{valid, pipe_valid} <= {pipe_valid, i_snoop_valid[g]};
{ready, pipe_ready} <= {pipe_ready, i_snoop_ready[g]};
end
//decode which profiling counter should increment based on valid and ready
logic incr_transaction, incr_backpressure, incr_starvation;
logic transaction_seen, incr_transaction_previous;
always_ff @(posedge clk) begin
incr_transaction <= ~freeze & valid & ready;
incr_backpressure <= ~freeze & valid & ~ready;
incr_starvation <= ~freeze & ~valid & ready & transaction_seen;
if (~freeze & valid & ready) transaction_seen <= 1'b1;
incr_transaction_previous <= incr_transaction;
if (~sclrn) begin
incr_transaction <= 1'b0;
incr_backpressure <= 1'b0;
incr_starvation <= 1'b0;
transaction_seen <= 1'b0;
end
end
//update the profiling counters
//64-bit counter is tessellated into two 32-bit counters, use the carry out from the
//lower 32 bits to determine whether to increment upper 32 bits
logic [DATA_WIDTH-1:0] count_transaction_lo, count_transaction_hi;
logic count_transaction_carry;
logic [DATA_WIDTH-1:0] count_backpressure_lo, count_backpressure_hi;
logic count_backpressure_carry;
logic [DATA_WIDTH-1:0] raw_starvation_lo, raw_starvation_hi;
logic raw_starvation_carry;
logic [DATA_WIDTH-1:0] count_starvation_lo, count_starvation_hi;
always_ff @(posedge clk) begin
//how many items of work have passed through this stallable interface
{count_transaction_carry, count_transaction_lo} <= {1'b0, count_transaction_lo} + incr_transaction;
count_transaction_hi <= count_transaction_hi + count_transaction_carry;
//how many clock cycles of backpressure have been observed
{count_backpressure_carry, count_backpressure_lo} <= {1'b0, count_backpressure_lo} + incr_backpressure;
count_backpressure_hi <= count_backpressure_hi + count_backpressure_carry;
//data starvation raw counter -- start counting "~valid & ready" only after the first item of work
{raw_starvation_carry, raw_starvation_lo} <= {1'b0, raw_starvation_lo} + incr_starvation;
raw_starvation_hi <= raw_starvation_hi + raw_starvation_carry;
//data starvation shadow register -- don't observe increases in raw counter after the last item of work
if (incr_transaction) count_starvation_lo <= raw_starvation_lo;
if (incr_transaction_previous) count_starvation_hi <= raw_starvation_hi;
if (~sclrn) begin
count_transaction_lo <= '0;
count_transaction_hi <= '0;
count_transaction_carry <= 1'b0;
count_backpressure_lo <= '0;
count_backpressure_hi <= '0;
count_backpressure_carry <= 1'b0;
raw_starvation_lo <= '0;
raw_starvation_hi <= '0;
raw_starvation_carry <= 1'b0;
count_starvation_lo <= '0;
count_starvation_hi <= '0;
end
end
//decode which offset to observe
always_ff @(posedge clk) begin
case (captured_addr[4:2])
3'h0: profiling_counter_per_interface[g] <= valid;
3'h1: profiling_counter_per_interface[g] <= ready;
3'h2: profiling_counter_per_interface[g] <= count_transaction_lo;
3'h3: profiling_counter_per_interface[g] <= count_transaction_hi;
3'h4: profiling_counter_per_interface[g] <= count_backpressure_lo;
3'h5: profiling_counter_per_interface[g] <= count_backpressure_hi;
3'h6: profiling_counter_per_interface[g] <= count_starvation_lo;
3'h7: profiling_counter_per_interface[g] <= count_starvation_hi;
default: profiling_counter_per_interface[g] <= 'x;
endcase
end
end
//mux for choosing a profiling counter has two pipeline stages
//first pipeline stage chooses one of 8 values associated with one stallable interface
//second pipeline stage chooses which stallable interface
always_ff @(posedge clk) begin
profiling_counter_final <= '0;
for (int i=0; i<NUM_INTERFACES; i++) begin
if (captured_addr[ADDR_WIDTH-3:5] == i) begin
profiling_counter_final <= profiling_counter_per_interface[i];
end
end
end
/////////////////////
// State machine //
/////////////////////
// This is the same approach used by the CSR: backpressure by default, several pipeline stages to process one read request.
// Here is the address map:
// - ROM:
// - consumes the bottom half of the address space, only some of which is backed by the ROM
// - runtime has no idea how big the ROM is, it walks the list of offsets/descriptions until it sees the next offset = 0
// - Profiling counters:
// - consumes the third quarter of the address space
// - each stallable interface has its own block of 32 bytes in the address space
// - address space is allocated starting from the bottom and increasing
// - Freeze logic:
// - consumes the fourth quarter of the address space
// - assume all incoming read requests are 4-byte aligned i.e. bottom 2 bits of address are 0
// - if the incoming read request has bit 2 of the byte address asserted (odd index in terms of 4-byte words), then assert freeze
// - if the incoming read request has bit 2 of the byte address deasserted (even index), then deassert freeze
// - read value returned is the updated value of freeze
always_ff @(posedge clk) begin
//default behavior
o_dbg_arready <= 1'b0;
o_dbg_rvalid <= 1'b0;
case (state)
STATE_IDLE: begin
if (i_dbg_arvalid) begin
o_dbg_arready <= 1'b1;
captured_addr <= i_dbg_araddr;
if (!i_dbg_araddr[ADDR_WIDTH-1]) begin //bottom half of address space is for ROM
state <= STATE_ROM_ACCEPT;
end
else begin //top half of address space is for profiling counters
if (!i_dbg_araddr[ADDR_WIDTH-2]) begin //3rd quarter of address space is for profiling counters
state <= STATE_COUNT_ACCEPT;
end
else begin //4th quarter of address space is for freeze logic
state <= STATE_FREEZE_DATA;
freeze <= i_dbg_araddr[2];
end
end
end
end
STATE_ROM_ACCEPT: begin
//ram_rd_addr valid now
state <= STATE_ROM_ADDR;
end
STATE_ROM_ADDR: begin
//hardened input register inside m20k valid now
state <= STATE_ROM_DATA;
end
STATE_ROM_DATA: begin
//hardened output register inside m20k valid now
o_dbg_rvalid <= 1'b1;
o_dbg_rdata <= ram_rd_data;
if (o_dbg_rvalid && i_dbg_rready) begin
o_dbg_rvalid <= 1'b0;
state <= STATE_IDLE;
end
end
STATE_COUNT_ACCEPT: begin
//captured_addr valid now
state <= STATE_COUNT_ADDR;
end
STATE_COUNT_ADDR: begin
//all indexes of profiling_counter_per_interface valid now
state <= STATE_COUNT_DATA;
end
STATE_COUNT_DATA: begin
//profiling_counter_final valid now
o_dbg_rvalid <= 1'b1;
o_dbg_rdata <= profiling_counter_final;
if (o_dbg_rvalid && i_dbg_rready) begin
o_dbg_rvalid <= 1'b0;
state <= STATE_IDLE;
end
end
STATE_FREEZE_DATA: begin
//freeze valid now
o_dbg_rvalid <= 1'b1;
o_dbg_rdata <= freeze;
if (o_dbg_rvalid && i_dbg_rready) begin
o_dbg_rvalid <= 1'b0;
state <= STATE_IDLE;
end
end
default: begin
state <= STATE_IDLE;
end
endcase
if (~sclrn) begin
state <= STATE_IDLE;
o_dbg_arready <= 1'b0;
o_dbg_rvalid <= 1'b0;
freeze <= 1'b0;
end
end
endmodule
|