summaryrefslogtreecommitdiff
path: root/python/openvino/demo/ip/intel_ai_ip/verilog/dla_lt_dimension_counter.sv
blob: 153869f5d9b79396e103783b8a49446a3a1d24fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Copyright 2020-2024 Intel Corporation.
//
// This software and the related documents are Intel copyrighted materials,
// and your use of them is governed by the express license under which they
// were provided to you ("License"). Unless the License provides otherwise,
// you may not use, modify, copy, publish, distribute, disclose or transmit
// this software or the related documents without Intel's prior written
// permission.
//
// This software and the related documents are provided as is, with no express
// or implied warranties, other than those that are expressly stated in the
// License.

/**
 * dla_lt_dimension_counter.sv
 *
 * This module generates tensor indexing information for N elements each cycle. The layout
 * transformation needs to know the context of each incoming token, and thus we need to
 * calculate the dimension information only from the tensor index. The transform also needs to
 * know about which "stride partition" the input belongs to, and where within the partition the
 * input is from.
 *
 * For example, consider a 4x4 RGB tensor with 2x2 partitions. The tensor with the (0,0) partition
 * outlined is shown below (where each value corresponds to the CWH ordering):

                                [2  5 ] 8 11
                 [1  4 ] 7 10   [14 17]20 23
   [0  3 ] 6 9   [13 16]19 22   26 29 32 35
   [12 15]18 21   25 28 31 34   38 41 44 47
    24 27 30 33   37 40 43 46
    36 39 42 45

 * in this case, for instance, the element 16 is in position C=1, W=1, H=1, and stride (S_W=0,S_H=0),
 * and is in position (inner_W=1,inner_H=1) within the stride.
 *
 */

`resetall
`undefineall
`default_nettype none

import dla_lt_pkg::*;

module dla_lt_dimension_counter import dla_common_pkg::*; #(
  parameter int ELEMENTS_PER_CYCLE,
  parameter int MAX_CHANNELS,

  parameter int MAX_FEATURE_WIDTH,
  parameter int MAX_FEATURE_HEIGHT,
  parameter int MAX_FEATURE_DEPTH,

  parameter int MAX_STRIDE_WIDTH,
  parameter int MAX_STRIDE_HEIGHT,
  parameter int MAX_STRIDE_DEPTH,
  parameter int MAX_INPUT_VOLUME,

  parameter int MAX_DIM_BITS
) (
  input wire clk,
  input wire i_rstn,
  input wire i_increment,

  layout_transform_config_if if_lt_config,

  // ready signal is asserted when the startup sequence is over
  output wire o_ready,

  // Tensor dimension output:
  output wire [max($clog2(MAX_CHANNELS), 1)-1:0]        o_c_dim [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   o_w_dim [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  o_h_dim [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   o_d_dim [ELEMENTS_PER_CYCLE-1:0],

  // Location within the stride partition:
  output wire [max($clog2(MAX_STRIDE_WIDTH), 1)-1:0]  o_w_inner [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_STRIDE_HEIGHT), 1)-1:0] o_h_inner [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_STRIDE_DEPTH), 1)-1:0]  o_d_inner [ELEMENTS_PER_CYCLE-1:0],

  // Which stride partition:
  output wire [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   o_w_stride [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  o_h_stride [ELEMENTS_PER_CYCLE-1:0],
  output wire [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   o_d_stride [ELEMENTS_PER_CYCLE-1:0],

  // Input index in original ordering:
  output wire [MAX_DIM_BITS-1:0] o_index    [ELEMENTS_PER_CYCLE-1:0]
);

  // Index calculation registers:
  logic [$clog2(ELEMENTS_PER_CYCLE + 1):0] state_cnt;
  logic startup;

  assign o_ready = state_cnt[$clog2(ELEMENTS_PER_CYCLE + 1)];

  logic [max($clog2(MAX_CHANNELS), 1)-1:0]        C_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   W_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_WIDTH), 1)-1:0]    IN_W_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   S_W_d [ELEMENTS_PER_CYCLE-1:0];

  logic [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  H_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_HEIGHT), 1)-1:0]   IN_H_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  S_H_d [ELEMENTS_PER_CYCLE-1:0];

  logic [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   D_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_DEPTH), 1)-1:0]    IN_D_d [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   S_D_d [ELEMENTS_PER_CYCLE-1:0];
  logic [MAX_DIM_BITS-1:0]    Index_d [ELEMENTS_PER_CYCLE-1:0];

  assign o_c_dim = C_d;
  assign o_w_dim = W_d;
  assign o_h_dim = H_d;
  assign o_d_dim = D_d;
  assign o_w_inner = IN_W_d;
  assign o_h_inner = IN_H_d;
  assign o_d_inner = IN_D_d;
  assign o_w_stride = S_W_d;
  assign o_h_stride = S_H_d;
  assign o_d_stride = S_D_d;
  assign o_index = Index_d;

  logic[MAX_DIM_BITS-1:0] next_index;

  // tried to avoid the waste here by creating in generate (Should be triangular), but couldn't index upwards...
  logic [max($clog2(MAX_CHANNELS), 1)-1:0]        C_regbank    [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   W_regbank    [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_WIDTH), 1)-1:0]    IN_W_regbank [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_WIDTH), 1)-1:0]   S_W_regbank  [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  H_regbank    [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_HEIGHT), 1)-1:0]   IN_H_regbank [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_HEIGHT), 1)-1:0]  S_H_regbank  [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   D_regbank    [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_STRIDE_DEPTH), 1)-1:0]    IN_D_regbank [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];
  logic [max($clog2(MAX_FEATURE_DEPTH), 1)-1:0]   S_D_regbank  [ELEMENTS_PER_CYCLE-1:0] [ELEMENTS_PER_CYCLE-1:0];

  assign startup = state_cnt[$clog2(ELEMENTS_PER_CYCLE + 1)];

  logic [16-1:0] channel_, width_, width_stride_, width_inner_, height_, height_stride_, height_inner_, depth_;
  logic counters_valid_;

  dla_lt_step_counter #(
    .ELEMENTS_PER_CYCLE(ELEMENTS_PER_CYCLE),
    .DIM_BITS(16),
    .DEPTH_TENSOR(0) // TODO(arooney): Enable 3D inputs
  ) step_counter (
    .clk(clk),
    .i_resetn(i_rstn),
    .i_increment((startup == 1'b0 | i_increment == 1'b1) & if_lt_config.valid),
    .i_channel_dim(if_lt_config.data.input_channels),
    .i_width_dim(if_lt_config.data.input_width),
    .i_width_overhang(if_lt_config.data.w_padding_per_stride),
    .i_height_overhang(if_lt_config.data.h_padding_per_stride),
    .i_height_dim(if_lt_config.data.input_height),
    .i_depth_dim(if_lt_config.data.input_depth),
    .i_channel_step(if_lt_config.data.c_step),
    .i_width_stride(if_lt_config.data.stride_width),
    .i_width_step(if_lt_config.data.w_step),
    .i_stride_w_count(if_lt_config.data.output_w_range),
    .i_width_stride_step(if_lt_config.data.w_stride_step),
    .i_width_inner_step(if_lt_config.data.w_inner_step),
    .i_height_stride(if_lt_config.data.stride_height),
    .i_height_step(if_lt_config.data.h_step),
    .i_stride_h_count(if_lt_config.data.output_h_range),
    .i_height_stride_step(if_lt_config.data.h_stride_step),
    .i_height_inner_step(if_lt_config.data.h_inner_step),
    .i_depth_step(if_lt_config.data.d_step),
    .i_pad_w(if_lt_config.data.left_pad),
    .i_pad_h(if_lt_config.data.high_pad),
    .i_continue_count_cond(if_lt_config.data.continue_count_cond),
    .i_overhang_end_w(if_lt_config.data.w_end_overhang),
    .i_w_nstrides(if_lt_config.data.w_nstrides),
    .i_h_nstrides(if_lt_config.data.h_nstrides),
    .o_channel(channel_),
    .o_width(width_),
    .o_width_stride(width_stride_),
    .o_width_inner(width_inner_),
    .o_height(height_),
    .o_height_stride(height_stride_),
    .o_height_inner(height_inner_),
    .o_depth(depth_),
    .o_valid(counters_valid_)
  );

  for (genvar in_token = 0; in_token < ELEMENTS_PER_CYCLE; in_token++)
  begin : gen_calculate_tensor_indexes
    always_ff @(posedge clk)
    /**
      *  Process: calculate_tensor_indexes
      *  Description: Given `ELEMENTS_PER_CYCLE` tokens, we must compute as many tensor indexes per-cycle in order
      *    to calculate the transformed address of each input token. This process computes the first
      *    value of each tensor dimension using division and modulo operators; the remainder of the
      *    `ELEMENTS_PER_CYCLE` values for each index are computed using the last index computed in the previous
      *    pipieline stages. There are `ELEMENTS_PER_CYCLE` stages before `ELEMENTS_PER_CYCLE` index values become ready,
      *    at which point, `ELEMENTS_PER_CYCLE` values become ready every cycle.
      */
    begin : ff_calculate_tensor_indexes
      if (!i_rstn)
      begin
        C_regbank[in_token] <= '{default: '0};
        W_regbank[in_token] <= '{default: '0};
        H_regbank[in_token] <= '{default: '0};
        D_regbank[in_token] <= '{default: '0};
        IN_W_regbank[in_token]  <= '{default: '0};
        S_W_regbank[in_token]   <= '{default: '0};
        IN_H_regbank[in_token]  <= '{default: '0};
        S_H_regbank[in_token]   <= '{default: '0};
        IN_D_regbank[in_token]  <= '{default: '0};
        S_D_regbank[in_token]   <= '{default: '0};
        C_d[in_token] <= '0;
        W_d[in_token] <= '0;
        H_d[in_token] <= '0;
        D_d[in_token] <= '0;
        Index_d[in_token] <= '0;

        if (in_token == 0)
        begin
          state_cnt <= ELEMENTS_PER_CYCLE;
          next_index <= '0;
        end
      end
      else
      begin
        if ((startup == 1'b0 || i_increment == 1'b1) & if_lt_config.valid & counters_valid_) // separate state and math logic...
        begin
          if (in_token == 0)
          begin
            state_cnt <= ~o_ready ? state_cnt - 1 : state_cnt;

            next_index <= next_index + ELEMENTS_PER_CYCLE;

            C_regbank[in_token][0] <=  channel_;
            W_regbank[in_token][0] <= width_;
            H_regbank[in_token][0] <= height_;
            D_regbank[in_token][0] <= depth_;

            S_W_regbank[in_token][0] <= width_stride_;
            S_H_regbank[in_token][0] <= height_stride_;
            S_D_regbank[in_token][0] <= 0;

            IN_W_regbank[in_token][0] <= width_inner_;
            IN_H_regbank[in_token][0] <= height_inner_;
            IN_D_regbank[in_token][0] <= 0;
          end
          else
          begin
            if (C_regbank[in_token-1][0] == if_lt_config.data.input_channels-1)
            begin
              C_regbank[in_token][0] <= 0;
              if (W_regbank[in_token-1][0] == if_lt_config.data.input_width-1)
              begin
                W_regbank[in_token][0] <= 0;
                IN_W_regbank[in_token][0] <= if_lt_config.data.w_padding_per_stride;
                S_W_regbank[in_token][0] <= 0;
                if (H_regbank[in_token-1][0] == if_lt_config.data.input_height-1)
                begin
                  H_regbank[in_token][0] <= 0;
                  IN_H_regbank[in_token][0] <= 0;
                  S_H_regbank[in_token][0] <= 0;
                  if (D_regbank[in_token-1][0] == if_lt_config.data.input_depth-1)
                  begin
                    D_regbank[in_token][0] <= 0;
                    IN_D_regbank[in_token][0] <= 0;
                    S_D_regbank[in_token][0] <= 0;
                  end
                  else
                  begin
                    D_regbank[in_token][0] <= D_regbank[in_token-1][0] + 1;
                    IN_D_regbank[in_token][0] <= IN_D_regbank[in_token-1][0] + 1;
                    if (IN_D_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_depth)
                    begin
                      IN_D_regbank[in_token][0] <= 0;
                      S_D_regbank[in_token][0] <= S_D_regbank[in_token-1][0] + 1;
                    end
                    else
                    begin
                      S_D_regbank[in_token][0] <= S_D_regbank[in_token-1][0];
                    end
                  end
                end
                else
                begin
                  H_regbank[in_token][0] <= H_regbank[in_token-1][0] + 1;
                  IN_H_regbank[in_token][0] <= IN_H_regbank[in_token-1][0] + 1;
                  if (IN_H_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_height)
                  begin
                    IN_H_regbank[in_token][0] <= 0;
                    if (S_H_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_h_limit) begin
                      S_H_regbank[in_token][0] <= 0;
                    end else begin
                      S_H_regbank[in_token][0] <= S_H_regbank[in_token-1][0] + 1;
                    end
                  end
                  else
                  begin
                    S_H_regbank[in_token][0] <= S_H_regbank[in_token-1][0];
                  end
                  D_regbank[in_token][0] <= D_regbank[in_token-1][0];
                  IN_D_regbank[in_token][0] <= IN_D_regbank[in_token-1][0];
                  S_D_regbank[in_token][0] <= S_D_regbank[in_token-1][0];

                end
              end
              else
              begin
                W_regbank[in_token][0] <= W_regbank[in_token-1][0] + 1;
                IN_W_regbank[in_token][0] <= IN_W_regbank[in_token-1][0] + 1;
                if (IN_W_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_width)
                begin
                  IN_W_regbank[in_token][0] <= 0;
                  S_W_regbank[in_token][0] <= S_W_regbank[in_token-1][0] + 1;
                  if (S_W_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_w_limit) begin
                    S_W_regbank[in_token][0] <= 0;
                  end else begin
                    S_W_regbank[in_token][0] <= S_W_regbank[in_token-1][0] + 1;
                  end
                end
                else
                begin
                  S_W_regbank[in_token][0] <= S_W_regbank[in_token-1][0];
                end
                H_regbank[in_token][0]    <= H_regbank[in_token-1][0];
                D_regbank[in_token][0]    <= D_regbank[in_token-1][0];

                IN_H_regbank[in_token][0] <= IN_H_regbank[in_token-1][0];
                IN_D_regbank[in_token][0] <= IN_D_regbank[in_token-1][0];

                S_H_regbank[in_token][0]  <= S_H_regbank[in_token-1][0];
                S_D_regbank[in_token][0]  <= S_D_regbank[in_token-1][0];
              end
            end
            else
            begin
              C_regbank[in_token][0]    <= C_regbank[in_token-1][0] + 1;

              W_regbank[in_token][0]    <= W_regbank[in_token-1][0];
              H_regbank[in_token][0]    <= H_regbank[in_token-1][0];
              D_regbank[in_token][0]    <= D_regbank[in_token-1][0];

              IN_W_regbank[in_token][0] <= IN_W_regbank[in_token-1][0];
              IN_H_regbank[in_token][0] <= IN_H_regbank[in_token-1][0];
              IN_D_regbank[in_token][0] <= IN_D_regbank[in_token-1][0];

              S_W_regbank[in_token][0]  <= S_W_regbank[in_token-1][0];
              S_H_regbank[in_token][0]  <= S_H_regbank[in_token-1][0];
              S_D_regbank[in_token][0]  <= S_D_regbank[in_token-1][0];
            end
            if (IN_W_regbank[in_token-1][0] >= if_lt_config.data.stride_width)
            begin
              IN_W_regbank[in_token][0] <= 0;
              if (S_W_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_w_limit) begin
                S_W_regbank[in_token][0] <= 0;
              end else begin
                S_W_regbank[in_token][0] <= S_W_regbank[in_token-1][0] + 1;
              end
            end
            if (IN_H_regbank[in_token-1][0] >= if_lt_config.data.stride_height)
            begin
              IN_H_regbank[in_token][0] <= 0;
              if (S_H_regbank[in_token-1][0] + 1 >= if_lt_config.data.stride_h_limit) begin
                S_H_regbank[in_token][0] <= 0;
              end else begin
                S_H_regbank[in_token][0] <= S_H_regbank[in_token-1][0] + 1;
              end
            end
            if (IN_D_regbank[in_token-1][0] >= if_lt_config.data.stride_depth)
            begin
              IN_D_regbank[in_token][0] <= 0;
              S_D_regbank[in_token][0] <= S_D_regbank[in_token-1][0] + 1;
            end
          end
          for (integer i = 1; i < (ELEMENTS_PER_CYCLE - in_token); i++)
          begin
            C_regbank[in_token][i] <= C_regbank[in_token][i-1];
            W_regbank[in_token][i] <= W_regbank[in_token][i-1];
            H_regbank[in_token][i] <= H_regbank[in_token][i-1];
            D_regbank[in_token][i] <= D_regbank[in_token][i-1];

            IN_W_regbank[in_token][i] <= IN_W_regbank[in_token][i-1];
            IN_H_regbank[in_token][i] <= IN_H_regbank[in_token][i-1];
            IN_D_regbank[in_token][i] <= IN_D_regbank[in_token][i-1];

            S_W_regbank[in_token][i] <= S_W_regbank[in_token][i-1];
            S_H_regbank[in_token][i] <= S_H_regbank[in_token][i-1];
            S_D_regbank[in_token][i] <= S_D_regbank[in_token][i-1];
          end
          C_d[in_token] <= C_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          W_d[in_token] <= W_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          H_d[in_token] <= H_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          D_d[in_token] <= D_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];

          IN_W_d[in_token] <= IN_W_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          IN_H_d[in_token] <= IN_H_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          IN_D_d[in_token] <= IN_D_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];

          S_W_d[in_token] <= S_W_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          S_H_d[in_token] <= S_H_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          S_D_d[in_token] <= S_D_regbank[in_token][(ELEMENTS_PER_CYCLE - in_token)-1];
          Index_d[in_token] <= next_index + in_token - (ELEMENTS_PER_CYCLE * (ELEMENTS_PER_CYCLE));
        end
      end
    end //ff_calculate_tensor_indexes
  end //gen_calculate_tensor_indexes
endmodule //lt_dimension_counter