blob: 6e6ac51037b9c19f0c9358fecda8aa5c2cb4c1b1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
// Copyright (C) 2018-2019 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#pragma once
#include "opencv2/core.hpp"
#include <memory>
#include <vector>
///
/// \brief The KuhnMunkres class
///
/// Solves the assignment problem.
///
class KuhnMunkres {
public:
///
/// \brief Initializes the class for assignment problem solving.
/// \param[in] greedy If a faster greedy matching algorithm should be used.
explicit KuhnMunkres(bool greedy = false);
///
/// \brief Solves the assignment problem for given dissimilarity matrix.
/// It returns a vector that where each element is a column index for
/// corresponding row (e.g. result[0] stores optimal column index for very
/// first row in the dissimilarity matrix).
/// \param dissimilarity_matrix CV_32F dissimilarity matrix.
/// \return Optimal column index for each row. -1 means that there is no
/// column for row.
///
std::vector<size_t> Solve(const cv::Mat &dissimilarity_matrix);
private:
static constexpr int kStar = 1;
static constexpr int kPrime = 2;
cv::Mat dm_;
cv::Mat marked_;
std::vector<cv::Point> points_;
std::vector<int> is_row_visited_;
std::vector<int> is_col_visited_;
int n_;
bool greedy_;
void TrySimpleCase();
bool CheckIfOptimumIsFound();
cv::Point FindUncoveredMinValPos();
void UpdateDissimilarityMatrix(float val);
int FindInRow(int row, int what);
int FindInCol(int col, int what);
void Run();
};
|