summaryrefslogtreecommitdiff
path: root/python/openvino/runtime/common/utils/include/samples/ocv_common.hpp
blob: 94f3b1fd2d2105e4bc46899ee7581512db9117af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

/**
 * @brief a header file with common samples functionality using OpenCV
 * @file ocv_common.hpp
 */

#pragma once

#include <opencv2/opencv.hpp>

#include "openvino/openvino.hpp"
#include "samples/common.hpp"

/**
 * @brief Sets image data stored in cv::Mat object to a given Blob object.
 * @param orig_image - given cv::Mat object with an image data.
 * @param blob - Blob object which to be filled by an image data.
 * @param batchIndex - batch index of an image inside of the blob.
 */
template <typename T>
void matU8ToBlob(const cv::Mat& orig_image, InferenceEngine::Blob::Ptr& blob, int batchIndex = 0) {
    InferenceEngine::SizeVector blobSize = blob->getTensorDesc().getDims();
    const size_t width = blobSize[3];
    const size_t height = blobSize[2];
    const size_t channels = blobSize[1];
    InferenceEngine::MemoryBlob::Ptr mblob = InferenceEngine::as<InferenceEngine::MemoryBlob>(blob);
    OPENVINO_ASSERT(mblob,
                    "We expect blob to be inherited from MemoryBlob in matU8ToBlob, "
                    "but by fact we were not able to cast inputBlob to MemoryBlob");
    // locked memory holder should be alive all time while access to its buffer happens
    auto mblobHolder = mblob->wmap();

    T* blob_data = mblobHolder.as<T*>();

    cv::Mat resized_image(orig_image);
    if (static_cast<int>(width) != orig_image.size().width || static_cast<int>(height) != orig_image.size().height) {
        cv::resize(orig_image, resized_image, cv::Size(width, height));
    }

    int batchOffset = batchIndex * width * height * channels;

    for (size_t c = 0; c < channels; c++) {
        for (size_t h = 0; h < height; h++) {
            for (size_t w = 0; w < width; w++) {
                blob_data[batchOffset + c * width * height + h * width + w] = resized_image.at<cv::Vec3b>(h, w)[c];
            }
        }
    }
}

/**
 * @brief Wraps data stored inside of a passed cv::Mat object by new Blob pointer.
 * @note: No memory allocation is happened. The blob just points to already existing
 *        cv::Mat data.
 * @param mat - given cv::Mat object with an image data.
 * @return resulting Blob pointer.
 */
static UNUSED InferenceEngine::Blob::Ptr wrapMat2Blob(const cv::Mat& mat) {
    size_t channels = mat.channels();
    size_t height = mat.size().height;
    size_t width = mat.size().width;

    size_t strideH = mat.step.buf[0];
    size_t strideW = mat.step.buf[1];

    bool is_dense = strideW == channels && strideH == channels * width;

    OPENVINO_ASSERT(is_dense, "Doesn't support conversion from not dense cv::Mat");

    InferenceEngine::TensorDesc tDesc(InferenceEngine::Precision::U8,
                                      {1, channels, height, width},
                                      InferenceEngine::Layout::NHWC);

    return InferenceEngine::make_shared_blob<uint8_t>(tDesc, mat.data);
}

static UNUSED ov::Tensor wrapMat2Tensor(const cv::Mat& mat) {
    const size_t channels = mat.channels();
    const size_t height = mat.size().height;
    const size_t width = mat.size().width;

    const size_t strideH = mat.step.buf[0];
    const size_t strideW = mat.step.buf[1];

    const bool is_dense = strideW == channels && strideH == channels * width;
    OPENVINO_ASSERT(is_dense, "Doesn't support conversion from not dense cv::Mat");

    return ov::Tensor(ov::element::u8, ov::Shape{1, height, width, channels}, mat.data);
}