summaryrefslogtreecommitdiff
path: root/OASIS/c/src/ekd_pca.c
blob: f76d20ede4eb2f5f1bb453dc8f2f035a08c7370c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#include "ekd_pca.h"

void centre_scale(float** input_matrix, uint32_t rows, uint32_t cols, centre_scale_operation_e operation) {
    float* means = (float*) malloc(cols * sizeof(float));
    float* std_devs = (float*) malloc(cols * sizeof(float));

    // Iterating column by column
    for (uint32_t j = 0; j<cols; j++) {
        float col_sum = 0.0;
        for (uint32_t i = 0; i<rows; i++){
            col_sum += input_matrix[i][j];
        }
        means[j] = col_sum / (float)rows;

        float variance = 0.0;
        for (uint32_t i = 0; i<rows; i++) variance += (input_matrix[i][j] - means[j]) * (input_matrix[i][j] - means[j]);
        std_devs[j] = (variance < 1e-6) ? 1e-6 : sqrtf(variance / (float)rows);
    }

    // Centering -> subtract means, Scaling -> Divide by std_devs
    for (uint32_t j=0; j<cols; j++) {
        for (uint32_t i=0; i<rows; i++) {
            if (operation == MEAN_UNIT_VARIANCE) {
                input_matrix[i][j] = (input_matrix[i][j] - means[j]) / std_devs[j];
            } else if (operation == MEAN) {
                input_matrix[i][j] = (input_matrix[i][j] - means[j]);
            }
        }
    }

    free(means);
    free(std_devs);
}

void covariance(float** input_matrix, uint32_t rows, uint32_t cols, float** covariance_matrix) {
    float** transposed_matrix = (float**) malloc(cols * sizeof(float*));
    for (uint32_t i=0; i<cols; i++) transposed_matrix[i] = (float*) malloc(rows * sizeof(float));

    transpose(input_matrix, rows, cols, transposed_matrix);

    matrix_operation(transposed_matrix, cols, rows, input_matrix, rows, cols, covariance_matrix, MM_MULTIPLY_GEMM);

    // Divide by n since we have full population
    for (uint32_t i=0; i<cols; i++) {
        for (uint32_t j=0; j<cols; j++) covariance_matrix[i][j] /= rows-1;
    }
    
    for (uint32_t i=0; i<cols; i++) free(transposed_matrix[i]);
    free(transposed_matrix);
}

void house_holder_vector(float* vector, uint32_t size) {

    // Computes the norm of the input vector
    float norm_input_vector = 0.0;
    for (uint32_t i=0; i<size; i++) norm_input_vector += vector[i] * vector[i];
    norm_input_vector = sqrt(norm_input_vector);

    // Since the rest of output vector already is the input vector, change the first index
    vector[0] = vector[0] + sign(vector[0]) * norm_input_vector;
}

void house_holder_transformation(float* house_holder_vector, uint32_t size, float** house_holder_matrix) {
    float** identity_matrix = (float**) malloc(size * sizeof(float*));
    for (uint32_t i=0; i<size; i++) identity_matrix[i] = (float*) malloc(size * sizeof(float));

    float** numerator = (float**) malloc(size * sizeof(float*));
    for (uint32_t i=0; i<size; i++) numerator[i] = (float*) malloc(size * sizeof(float));

    eye(identity_matrix, size);

    float denominator = inner_product(house_holder_vector, house_holder_vector, size);

    outer_product(house_holder_vector, size, numerator);

    for (uint32_t i=0; i<size; i++) {
        for (uint32_t j=0; j<size; j++) numerator[i][j] = (denominator == 0) ? 0 : (2 / denominator) * numerator[i][j];
    }

    matrix_operation(identity_matrix, size, size, numerator, size, size, house_holder_matrix, MM_SUBTRACT);

    for (uint32_t i=0; i<size; i++){
        free(numerator[i]);
        free(identity_matrix[i]);
    } 
    free(numerator);
    free(identity_matrix);
}

void qr_decomposition(float** input_matrix, uint32_t size, float** resultant_matrix) {
    float** matrix_Q = (float**) malloc(size * sizeof(float*)); // Has size x size dimensions
    float** matrix_Q_prime = (float**) malloc(size * sizeof(float*)); // Has size x size dimensions
    float** matrix_R = (float**) malloc(size * sizeof(float*)); // Has size x size dimensions
    float** matrix_R_prime = (float**) malloc(size * sizeof(float*)); // Has size x size dimensions
    for(uint32_t i=0; i<size; i++) {
        matrix_Q[i] = (float*) malloc(size * sizeof(float));
        matrix_Q_prime[i] = (float*) malloc(size * sizeof(float));
        matrix_R[i] = (float*) malloc(size * sizeof(float));
        matrix_R_prime[i] = (float*) malloc(size * sizeof(float));
    }

    for (uint32_t i=0; i<size; i++) memcpy(matrix_R[i], input_matrix[i], size * sizeof(float));

    eye(matrix_Q, size);

    for (uint32_t i=0; i<size; i++) {
        float* current_house_holder_vector = (float*) malloc((size - i) * sizeof(float));

        float** current_house_holder_matrix = (float**) malloc((size - i) * sizeof(float*)); // Has (size-i)x(size-i) dimensions
        for (uint32_t j=0; j<(size - i); j++) current_house_holder_matrix[j] = (float*) malloc((size - i) * sizeof(float));

        float** matrix_H = (float**) malloc(size * sizeof(float*)); // Has size x size dimensions
        for (uint32_t j=0; j<size; j++) matrix_H[j] = (float*) malloc(size * sizeof(float));

        eye(matrix_H, size);

        for(uint32_t j=0; j<(size - i); j++) current_house_holder_vector[j] = matrix_R[j+i][i];

        house_holder_vector(current_house_holder_vector, (size - i));

        house_holder_transformation(current_house_holder_vector, (size - i), current_house_holder_matrix);

        // Starting from the ith ith sub matrix
        for (uint32_t j=i; j<size; j++) {
            for (uint32_t k=i; k<size; k++) matrix_H[j][k] = current_house_holder_matrix[j-i][k-i];
        }

        matrix_operation(matrix_H, size, size, matrix_R, size, size, matrix_R_prime, MM_MULTIPLY_GEMM);
        matrix_operation(matrix_Q, size, size, matrix_H, size, size, matrix_Q_prime, MM_MULTIPLY_GEMM);

        // print_matrix(matrix_H, size, size);
        
        for (uint32_t j=0; j<size; j++) memcpy(matrix_Q[j], matrix_Q_prime[j], size * sizeof(float));
        for (uint32_t j=0; j<size; j++) memcpy(matrix_R[j], matrix_R_prime[j], size * sizeof(float));

        for (uint32_t j=0; j<size; j++) free(matrix_H[j]);
        free(matrix_H);
        for (uint32_t j=0; j<(size - i); j++) free(current_house_holder_matrix[j]);
        free(current_house_holder_matrix);
        free(current_house_holder_vector);
    }

    matrix_operation(matrix_R, size, size, matrix_Q, size, size, resultant_matrix, MM_MULTIPLY_GEMM);
    matrix_operation(matrix_Q, size, size, matrix_R, size, size, resultant_matrix, MM_MULTIPLY_GEMM);

    print_matrix(matrix_R, size, size);

    for (uint32_t i=0; i<size; i++) {
        free(matrix_R[i]);
        free(matrix_R_prime[i]);
        free(matrix_Q_prime[i]);
        free(matrix_Q[i]);
    }
    free(matrix_R_prime);
    free(matrix_R);
    free(matrix_Q_prime);
    free(matrix_Q);
}

void qr_algorithm(float** input_matrix, uint32_t rows, uint32_t cols, float** resultant_matrix) {
    float** covariance_matrix = (float**) malloc(cols * sizeof(float*)); // Has feature x feature dimensions
    for (uint32_t i=0; i<cols; i++) covariance_matrix[i] = (float*) malloc(cols * sizeof(float));

    float** covariance_matrix_prime = (float**) malloc(cols * sizeof(float*)); // Has feature x feature dimensions
    for (uint32_t i=0; i<cols; i++) covariance_matrix_prime[i] = (float*) malloc(cols * sizeof(float));

    centre_scale(input_matrix, rows, cols, MEAN);
    covariance(input_matrix, rows, cols, covariance_matrix);

    qr_decomposition(covariance_matrix, cols, covariance_matrix_prime);
    while (matrix_norm(covariance_matrix_prime, covariance_matrix, cols, cols) > TOLERANCE) {
        for (uint32_t i=0; i<cols; i++) {
            for (uint32_t j=0; j<cols; j++) {
                if (i == j) printf("%.2f ", covariance_matrix[i][j]);
            } 
        }

        memcpy(covariance_matrix, covariance_matrix_prime, cols);
        qr_decomposition(covariance_matrix, cols, covariance_matrix_prime);

    for (uint32_t i=0; i<cols; i++) free(covariance_matrix[i]);
    free(covariance_matrix);
    }
}

void power_iteration(float** input_matrix, uint32_t size, float* eigen_vector) {
    // Initialize first guess vector
    float* new_vector = (float*) malloc(size * sizeof(float));
    float* curr_vector = (float*) malloc(size * sizeof(float));
    for (uint32_t i=0; i<size; i++) curr_vector[i] = (float) rand() / RAND_MAX;

    // MAX_INTERATIONS in case the singular vector doesn't converge
    for (uint32_t i=0; i<MAX_ITERATIONS; i++) {
        matrix_vector_multiply(input_matrix, size, size, curr_vector, new_vector, MV_MULTIPLY);
        vector_normalize(curr_vector, size);
        vector_normalize(new_vector, size);
        if (fabs(fabs(cosine_similarity(new_vector, curr_vector, size))-1.0) < TOLERANCE) break;
        memcpy(curr_vector, new_vector, size * sizeof(float));
    }

    memcpy(eigen_vector, new_vector, size * sizeof(float));
    free(curr_vector);
    free(new_vector);
}

float eigen_value_compute(float* eigen_vector, float** input_matrix, uint32_t size) {
    if (vector_norm(eigen_vector, size) == 0) return 0;

    float lambda = 0.0f;
    for (uint32_t i=0; i<size; i++) {
        lambda += input_matrix[i][i] * eigen_vector[i] * eigen_vector[i];
        for (uint32_t j=0; j<size; j++) {
            if (i != j) {
                lambda += input_matrix[i][j] * eigen_vector[i] * eigen_vector[j];
            }
        }
    }
    lambda /= vector_norm(eigen_vector, size) * vector_norm(eigen_vector, size);
    return lambda;
}

void subtract_eigen(float* eigen_vector, float** input_matrix, float** resultant_matrix, float eigen_value, uint32_t size) {
    float** outer_product_matrix = (float**) malloc(size * sizeof(float*));
    for (uint32_t i=0; i<size; i++) outer_product_matrix[i] = (float*) malloc(size * sizeof(float));

    outer_product(eigen_vector, size, outer_product_matrix);

    for (uint32_t i=0; i<size; i++) {
        for (uint32_t j=0; j<size; j++) outer_product_matrix[i][j] *= eigen_value;
    }

    matrix_operation(input_matrix, size, size, outer_product_matrix, size, size, resultant_matrix, MM_SUBTRACT);

    for (uint32_t i=0 ; i<size; i++) free(outer_product_matrix[i]);
    free(outer_product_matrix);
}

void pca_covariance_method(float** input_matrix, uint32_t rows, uint32_t cols, float** resultant_matrix, uint32_t components) {
    float** input_matrix_original = (float**) malloc(rows * sizeof(float*)); // Has sample x feature dimensions
    for (uint32_t i=0; i<rows; i++) input_matrix_original[i] = (float*) malloc(cols * sizeof(float));

    float* eigen_vector = (float*) malloc(cols * sizeof(float)); // Has feature dimensions

    float** covariance_matrix = (float**) malloc(cols * sizeof(float*)); // Has feature x feature dimensions
    float** covariance_matrix_prime = (float**) malloc(cols * sizeof(float*));
    float** projection_matrix = (float**) malloc(cols * sizeof(float*)); // Has features x components dimensions

    for (uint32_t i=0; i<cols; i++) {
        projection_matrix[i] = (float*) malloc(components * sizeof(float));
        covariance_matrix[i] = (float*) malloc(cols * sizeof(float));
        covariance_matrix_prime[i] = (float*) malloc(cols * sizeof(float));
    }

    copy_matrix(input_matrix, input_matrix_original, rows, cols);

    centre_scale(input_matrix, rows, cols, MEAN);
    covariance(input_matrix, rows, cols, covariance_matrix);

    for (uint32_t i=0; i<components; i++) {
        power_iteration(covariance_matrix, cols, eigen_vector);
        float eigen_value = eigen_value_compute(eigen_vector, covariance_matrix, cols);
        subtract_eigen(eigen_vector, covariance_matrix, covariance_matrix_prime, eigen_value, cols);
        for (uint32_t j=0; j<cols; j++) projection_matrix[j][i] = eigen_vector[j];
       
        copy_matrix(covariance_matrix_prime, covariance_matrix, cols, cols);
    }

    matrix_operation(input_matrix_original, rows, cols, projection_matrix, cols, components, resultant_matrix, MM_MULTIPLY_GEMM); // Has sample x components dimensions

    free(eigen_vector);

    for (uint32_t i=0; i<cols; i++) {
        free(projection_matrix[i]);
        free(covariance_matrix_prime[i]);
        free(covariance_matrix[i]);
    }

    for (uint32_t i=0; i<rows; i++) {
        free(input_matrix_original[i]);
    }

    free(covariance_matrix_prime);
    free(covariance_matrix); 
    free(input_matrix_original);
    free(projection_matrix);
}