summaryrefslogtreecommitdiff
path: root/OASIS/c/src/ekd_svm.c
blob: 13c155d4fbcd1700c157917c8e6768e9477d766d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#include "ekd_svm.h"

void svm_preprocess(float** input_matrix, uint32_t rows, uint32_t cols) {
    centre_scale(input_matrix, rows, cols, MEAN_UNIT_VARIANCE);
}

float rbf_kernel(float* sample_1, float* sample_2, uint32_t features, float gamma) {
    float distance = 0.0f;
    for (uint32_t i=0; i<features; i++) distance += pow(sample_1[i] - sample_2[i], 2);
    return exp(-gamma * distance);
}

void kernel_matrix_transform(float** input_matrix, float** resultant_matrix, uint32_t samples, uint32_t features, float gamma) {
    for (uint32_t i=0; i<samples; i++) {
        for (uint32_t j=0; j<samples; j++) {
            float kernel = rbf_kernel(input_matrix[i], input_matrix[j], features, gamma);
            resultant_matrix[i][j] = kernel;
        }
    }
}

void kernel_row_transform(float** input_matrix, float* query_row, float* resultant_row, uint32_t samples, uint32_t features, float gamma) {
    for (uint32_t i=0; i<samples; i++) {
        float kernel = rbf_kernel(input_matrix[i], query_row, features, gamma);
        resultant_row[i] = kernel;
    }
}

float get_error(uint32_t index, float* alphas, float** kernel_matrix, int32_t* labels, uint32_t samples) {
    float error = 0.0f;

    for (uint32_t i=0; i<samples; i++) error += alphas[i] * labels[i] * kernel_matrix[i][index];

    error -= labels[index];
    return error;
}

uint32_t find_second_alpha(uint32_t first_index, float first_error_val, float* alphas, float** kernel_matrix, int32_t* labels, uint32_t samples) {
    int32_t second_index = -1;
    float max_error_diff = 0;

    for (uint32_t i=0; i<samples; i++) {
        if (i == first_index) continue;

        float second_error_val = get_error(i, alphas, kernel_matrix, labels, samples);
        float error_diff = fabs(first_error_val - second_error_val);
        if (error_diff > max_error_diff) {
            max_error_diff = error_diff;
            second_index = i;
        }
    }
    return second_index;
}

void calculate_bounds(float first_label, float second_label, float first_alpha, float second_alpha, float penalty, float* lower_bound, float* upper_bound) {
    if (first_label != second_label) {
        *lower_bound = fmax(0, second_alpha - first_alpha);
        *upper_bound = fmin(penalty, penalty + second_alpha - first_alpha);
    } else {
        *lower_bound = fmax(0, second_alpha + first_alpha - penalty);
        *upper_bound = fmin(penalty, second_alpha + first_alpha);
    }
}

float clip_second_alpha_new(float second_alpha_new, float lower_bound, float upper_bound) {
    if (second_alpha_new < lower_bound) {
        return lower_bound;
    } else if (second_alpha_new > upper_bound) {
        return upper_bound;
    } else {
        return second_alpha_new;
    }
}

void update_alphas(float first_alpha_new, float second_alpha_new, float* alphas, uint32_t first_index, uint32_t second_index) {
    alphas[first_index] = first_alpha_new;
    alphas[second_index] = second_alpha_new;
}

float calculate_bias(float first_error_val, float second_error_val, float first_alpha_new, float first_alpha, float second_alpha_new, float second_alpha, float kernel_val_ii, float kernel_val_ij, float kernel_val_jj, float first_label, float second_label, float penalty) {
    float first_bias = first_error_val + first_label * (first_alpha_new - first_alpha) * kernel_val_ii + second_label * (second_alpha_new - second_alpha) * kernel_val_ij;
    float second_bias = first_error_val + first_label * (first_alpha_new - first_alpha) * kernel_val_ij + second_label * (second_alpha_new - second_alpha) * kernel_val_jj;
    float bias;
    if (first_alpha_new > 0 && first_alpha_new < penalty) {
        bias = first_bias;
    } else if (second_alpha_new > 0 && second_alpha_new < penalty) {
        bias = second_bias;
    } else {
        bias = (first_bias + second_bias) / 2;
    }
    return bias;
}

void update_errors(float* errors, uint32_t samples, uint32_t first_index, uint32_t second_index, float first_label, float second_label, float first_alpha_new, float first_alpha, float second_alpha_new, float second_alpha, float* bias, float** kernel_matrix) {
    float bias_temp = *bias;
    for (uint32_t i=0; i<samples; i++) {
        if (i == first_index || i == second_index) continue;
        float error = errors[i];
        error += first_label * (first_alpha_new - first_alpha) * kernel_matrix[first_index][i];
        error -= bias_temp - *bias;
        errors[i] = error;
    }
}

uint8_t optimize_alphas(uint32_t first_index, uint32_t second_index, float* alphas, float* bias, float* errors, float** kernel_matrix, int32_t* labels, uint32_t samples, float penalty) {
    if (first_index == second_index) return 0;

    float first_label = (float) labels[first_index];
    float second_label = (float) labels[second_index];

    float first_alpha = alphas[first_index];
    float second_alpha = alphas[second_index];

    float first_error_val = errors[first_index];
    float second_error_val = errors[second_index];

    float kernel_val_ii = kernel_matrix[first_index][first_index];
    float kernel_val_jj = kernel_matrix[second_index][second_index];
    float kernel_val_ij = kernel_matrix[first_index][second_index];

    // Second derivative of objective function
    float learning_rate = 2 * kernel_val_ij - kernel_val_ii - kernel_val_jj;
    if (learning_rate >= 0) return 0;

    float second_alpha_new = second_alpha - (second_label * (first_error_val - second_error_val) / learning_rate);

    float lower_bound, upper_bound;
    calculate_bounds(first_label, second_label, first_alpha, second_alpha, penalty, &lower_bound, &upper_bound);
    second_alpha_new = clip_second_alpha_new(second_alpha_new, lower_bound, upper_bound);

    if (fabs(second_alpha_new - second_alpha) < SVM_TOLERANCE * (second_alpha_new + second_alpha + SVM_TOLERANCE)) return 0;
    
    float first_alpha_new = first_alpha + first_label * second_label * (second_alpha - second_alpha_new);

    update_alphas(first_alpha_new, second_alpha_new, alphas, first_index, second_index);

    float bias_new = calculate_bias(first_error_val, second_error_val, first_alpha_new, first_alpha, second_alpha_new, second_alpha, kernel_val_ii, kernel_val_ij, kernel_val_jj, first_label, second_label, penalty);
    *bias = bias_new;

    update_errors(errors, samples, first_index, second_index, first_label, second_label, first_alpha_new, first_alpha, second_alpha_new, second_alpha, bias, kernel_matrix);

    return 1;
}

uint8_t verify_kkt(uint32_t first_index, float tolerance, float* alphas, float* bias, float* errors, float** kernel_matrix, int32_t* labels, uint32_t samples, float penalty) {
    float first_label = (float) labels[first_index];
    float first_alpha =  alphas[first_index];
    float first_error_val = errors[first_index];
    float first_residual_error = first_error_val * first_label;
    
    if ((first_residual_error < -tolerance && first_alpha < penalty) || (first_residual_error > tolerance && first_alpha > 0)) {
        // Alpha is able be optimized, now find second alpha using heuristic method
        uint32_t second_index = find_second_alpha(first_index, first_error_val, alphas, kernel_matrix, labels, samples);
        // If the alphas have been optimized, return
        if (optimize_alphas(first_index, second_index, alphas, bias, errors, kernel_matrix, labels, samples, penalty)) return 1;

        // Could not find second alpha or couldn't optimize alphas values
        uint32_t max_index = -1;
        float max_error = -FLT_MAX;
        for (uint32_t i=0; i<samples; i++) {
            if (alphas[i] > 0 && alphas[i] < penalty) {
                float error = errors[i];
                if (fabs(error - first_error_val) > max_error) {
                    max_index = i;
                    max_error = fabs(error - first_error_val);
                }
            }
        }

        if (max_index != -1 && optimize_alphas(first_index, max_index, alphas, bias, errors, kernel_matrix, labels, samples, penalty) == 1) return 1;
        
        // Still couldn't optimize alpha values:w
        return 0;
    }

    // Alpha values do not need to be optimized
    return 0;
}

void train_svm(float** data_matrix, uint32_t samples, uint32_t features, float* alphas, float* bias, int32_t* labels, float penalty) {
    // Centre and scale reduced_dimension_matrix
    svm_preprocess(data_matrix, samples, features);

    float** kernel_matrix = (float**) malloc(samples * sizeof(float*));
    for (uint32_t i=0; i<samples; i++) kernel_matrix[i] = (float*) malloc(samples * sizeof(float));

    // Compute kernel matrix using RBF
    kernel_matrix_transform(data_matrix, kernel_matrix, samples, features, GAMMA);

    // Initialize bias to 0, alphas/errors to random numbers between -1 and 1
    *bias = 0;

    float* errors = (float*) malloc(samples * sizeof(float));
    for (uint32_t i=0; i<samples; i++) {
        errors[i] = (float) rand() / (float) RAND_MAX * 2 - 1;
        alphas[i] = (float) rand() / (float) RAND_MAX * 2 - 1;
    }

    uint32_t num_changed_alphas = 0;
    uint32_t search_passes = 0;
    uint8_t searched_all_flag = 1;

    while ((search_passes < MAX_SVM_PASSES && num_changed_alphas > 0) || searched_all_flag) {
        num_changed_alphas = 0;

        if (searched_all_flag) {
            // Loops over all samples
            for (uint32_t sample_index=0; sample_index<samples; sample_index++) 
                num_changed_alphas += verify_kkt(sample_index, SVM_TOLERANCE, alphas, bias, errors, kernel_matrix, labels, samples, penalty);
        } else {
            // Loops over non support vector samples (not 0 and not C -> penalty parameter)
            for (uint32_t sample_index=0; sample_index<samples; sample_index++) {
                if (alphas[sample_index] > 0 && alphas[sample_index] < penalty)
                    num_changed_alphas += verify_kkt(sample_index, SVM_TOLERANCE, alphas, bias, errors, kernel_matrix, labels, samples, penalty);
            }
        }

        if (searched_all_flag) {
            searched_all_flag = 0;
        } else if (num_changed_alphas == 0) {
            searched_all_flag = 1;
        }
        search_passes++;
    }

    for (uint32_t i=0; i<samples; i++) free (kernel_matrix[i]);
    free(kernel_matrix);
    free(errors);
}

int32_t svm_predict(float** test_data, int32_t* labels_test, uint32_t num_test, uint32_t num_components, float* alphas, float bias, float gamma) {
    int num_correct = 0;
    for (int i=0; i<num_test; i++) {
        float transformed_row[num_test];
        kernel_row_transform(test_data, test_data[i], transformed_row, num_test, num_components, gamma);
        float prediction = bias;
        for (int j = 0; j<num_test; j++) {
            prediction += alphas[j] * transformed_row[j];
        }
        if (prediction >= 0 && labels_test[i] == 1) {
            num_correct++;
        } else if (prediction < 0 && labels_test[i] == -1) {
            num_correct++;
        }
    }
    return num_correct;
}

float test_svm(float** data_test, int32_t* labels_test, uint32_t num_test, uint32_t num_components, float* alphas, float bias) {
    uint32_t num_correct = 0;
    float* prediction = (float*) malloc(num_test * sizeof(float));
    for (uint8_t i=0; i<num_test; i++) {
        prediction[i] = svm_predict(data_test, labels_test, num_test, num_components, alphas, bias, GAMMA);
        if (prediction[i] * labels_test[i] > 0) num_correct++;
    }
    float accuracy = ((float) num_correct / num_test) * 100;
    free(prediction);
    return accuracy;
}